
Eloquent JavaScript
A Modern Introduction to Programming

Marijn Haverbeke

Copyright © 2014 by Marijn Haverbeke

This work is licensed under a Creative Commons attribution-noncommercial
license (http://creativecommons.org/licenses/by-nc/3.0/). All code in the book may
also be considered licensed under an MIT license (http://opensource.org/licenses/
MIT).

The illustrations are contributed by various artists: Cover by Wasif Hyder.
Computer (introduction) and unicycle people (Chapter 21) by Max Xiantu.
Sea of bits (Chapter 1) and weresquirrel (Chapter 4) by Margarita Martínez
and José Menor. Octopuses (Chapter 2 and 4) by Jim Tierney. Object with
on/off switch (Chapter 6) by Dyle MacGregor. Regular expression diagrams
in Chapter 9 generated with regexper.com by Jeff Avallone. Game concept for
Chapter 15 by Thomas Palef. Pixel art in Chapter 16 by Antonio Perdomo
Pastor.

The second edition of Eloquent JavaScript was made possible by 454 financial
backers.

You can buy a print version of this book, with an extra bonus chapter included,
printed by No Starch Press at http://www.amazon.com/gp/product/1593275846/ref=as_

li_qf_sp_asin_il_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1593275846&linkCode=

as2&tag=marijhaver-20&linkId=VPXXXSRYC5COG5R5.

i

http://creativecommons.org/licenses/by-nc/3.0/
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://regexper.com
http://lessmilk.com
http://eloquentjavascript.net/backers.html
http://eloquentjavascript.net/backers.html
http://www.amazon.com/gp/product/1593275846/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1593275846&linkCode=as2&tag=marijhaver-20&linkId=VPXXXSRYC5COG5R5
http://www.amazon.com/gp/product/1593275846/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1593275846&linkCode=as2&tag=marijhaver-20&linkId=VPXXXSRYC5COG5R5
http://www.amazon.com/gp/product/1593275846/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1593275846&linkCode=as2&tag=marijhaver-20&linkId=VPXXXSRYC5COG5R5

Contents
On programming . 2
Why language matters . 3
What is JavaScript? . 6
Code, and what to do with it . 7
Overview of this book . 8
Typographic conventions . 9

1 Values, Types, and Operators 10
Values . 10
Numbers . 11
Strings . 14
Unary operators . 15
Boolean values . 15
Undefined values . 17
Automatic type conversion . 18
Summary . 20

2 Program Structure 21
Expressions and statements . 21
Variables . 22
Keywords and reserved words . 24
The environment . 24
Functions . 24
The console.log function . 25
Return values . 25
prompt and confirm . 26
Control flow . 27
Conditional execution . 27
while and do loops . 29
Indenting Code . 31
for loops . 31
Breaking Out of a Loop . 32
Updating variables succinctly . 32

ii

Dispatching on a value with switch . 33
Capitalization . 34
Comments . 34
Summary . 35
Exercises . 36

3 Functions 38
Defining a function . 38
Parameters and scopes . 39
Nested scope . 40
Functions as values . 42
Declaration notation . 42
The call stack . 43
Optional Arguments . 44
Closure . 45
Recursion . 47
Growing functions . 49
Functions and side effects . 52
Summary . 52
Exercises . 53

4 Data Structures: Objects and Arrays 55
The weresquirrel . 55
Data sets . 56
Properties . 57
Methods . 58
Objects . 59
Mutability . 62
The lycanthrope’s log . 63
Computing correlation . 64
Objects as maps . 66
The final analysis . 67
Further arrayology . 69
Strings and their properties . 70
The arguments object . 71
The Math object . 72
The global object . 74
Summary . 74
Exercises . 75

iii

5 Higher-Order Functions 78
Abstraction . 78
Abstracting array traversal . 79
Higher-order functions . 81
Passing along arguments . 83
JSON . 84
Filtering an array . 85
Transforming with map . 86
Summarizing with reduce . 86
Composability . 87
The cost . 88
Great-great-great-great-… . 89
Binding . 92
Summary . 93
Exercises . 93

6 The Secret Life of Objects 95
History . 95
Methods . 97
Prototypes . 98
Constructors . 99
Overriding derived properties . 100
Prototype interference . 101
Prototype-less objects . 103
Polymorphism . 104
Laying out a table . 104
Getters and setters . 110
Inheritance . 111
The instanceof operator . 113
Summary . 113
Exercises . 114

7 Project: Electronic Life 115
Definition . 115
Representing space . 116
A critter’s programming interface . 117
The world object . 119
this and its scope . 121
Animating life . 122
It moves . 125

iv

More life forms . 125
A more lifelike simulation . 127
Action handlers . 128
Populating the new world . 129
Bringing it to life . 130
Exercises . 132

8 Bugs and Error Handling 134
Programmer mistakes . 134
Strict mode . 135
Testing . 136
Debugging . 137
Error propagation . 139
Exceptions . 140
Cleaning up after exceptions . 141
Selective catching . 142
Assertions . 145
Summary . 145
Exercises . 146

9 Regular Expressions 147
Creating a regular expression . 147
Testing for matches . 148
Matching a set of characters . 148
Repeating parts of a pattern . 150
Grouping subexpressions . 151
Matches and groups . 151
The date type . 152
Word and string boundaries . 153
Choice patterns . 154
The mechanics of matching . 154
Backtracking . 156
The replace method . 158
Greed . 159
Dynamically creating RegExp objects 160
The search method . 161
The lastIndex property . 162
Parsing an INI file . 163
International characters . 165
Summary . 166

v

Exercises . 167

10 Modules 169
Why modules help . 169
Using functions as namespaces . 171
Objects as interfaces . 173
Detaching from the global scope . 174
Evaluating data as code . 174
Require . 175
Slow-loading modules . 177
Interface design . 180
Summary . 182
Exercises . 182

11 Project: A Programming Language 184
Parsing . 184
The evaluator . 188
Special forms . 190
The environment . 191
Functions . 193
Compilation . 194
Cheating . 194
Exercises . 195

12 JavaScript and the Browser 198
Networks and the Internet . 198
The Web . 199
HTML . 200
HTML and JavaScript . 202
In the sandbox . 203
Compatibility and the browser wars 204

13 The Document Object Model 206
Document structure . 206
Trees . 207
The standard . 209
Moving through the tree . 209
Finding elements . 211
Changing the document . 212
Creating nodes . 212

vi

Attributes . 214
Layout . 216
Styling . 218
Cascading styles . 220
Query selectors . 221
Positioning and animating . 222
Summary . 224
Exercises . 225

14 Handling Events 227
Event handlers . 227
Events and DOM nodes . 228
Event objects . 228
Propagation . 229
Default actions . 230
Key events . 231
Mouse clicks . 233
Mouse motion . 234
Scroll events . 236
Focus events . 238
Load event . 238
Script execution timeline . 239
Setting timers . 240
Debouncing . 241
Summary . 242
Exercises . 243

15 Project: A Platform Game 245
The game . 245
The technology . 246
Levels . 247
Reading a level . 248
Actors . 249
Encapsulation as a burden . 251
Drawing . 252
Motion and collision . 257
Actors and actions . 259
Tracking keys . 263
Running the game . 264
Exercises . 266

vii

16 Drawing on Canvas 267
SVG . 267
The canvas element . 268
Filling and stroking . 269
Paths . 270
Curves . 272
Drawing a pie chart . 275
Text . 276
Images . 277
Transformation . 279
Storing and clearing transformations 281
Back to the game . 283
Choosing a graphics interface . 288
Summary . 289
Exercises . 290

17 HTTP 292
The protocol . 292
Browsers and HTTP . 294
XMLHttpRequest . 295
Sending a request . 296
Asynchronous Requests . 297
Fetching XML Data . 298
HTTP sandboxing . 299
Abstracting requests . 299
Promises . 301
Appreciating HTTP . 304
Security and HTTPS . 305
Summary . 305
Exercises . 306

18 Forms and Form Fields 308
Fields . 308
Focus . 310
Disabled fields . 311
The form as a whole . 311
Text fields . 312
Checkboxes and radio buttons . 314
Select fields . 315
File fields . 316

viii

Storing data client-side . 318
Summary . 320
Exercises . 321

19 Project: A Paint Program 323
Implementation . 324
Building the DOM . 324
The foundation . 325
Tool selection . 326
Color and brush size . 328
Saving . 330
Loading image files . 331
Finishing up . 333
Exercises . 334

20 Node.js 338
Background . 338
Asynchronicity . 339
The node command . 340
Modules . 341
Installing with NPM . 342
The file system module . 344
The HTTP module . 345
Streams . 347
A simple file server . 348
Error handling . 353
Summary . 355
Exercises . 355

21 Project: Skill-Sharing Website 358
Design . 359
Long polling . 359
HTTP interface . 360
The server . 363
The client . 370
Exercises . 378
Program Structure . 381
Functions . 382
Data Structures: Objects and Arrays 383
Higher-Order Functions . 385

ix

The Secret Life of Objects . 386
Project: Electronic Life . 387
Bugs and Error Handling . 388
Regular Expressions . 388
Modules . 389
Project: A Programming Language . 390
The Document Object Model . 391
Handling Events . 392
Project: A Platform Game . 393
Drawing on Canvas . 394
HTTP . 396
Forms and Form Fields . 397
Project: A Paint Program . 398
Node.js . 400
Project: Skill-Sharing Website . 402

x

Introduction
This is a book about getting computers to do what you want them to do.
Computers are about as common as screwdrivers today, but they contain a lot
more hidden complexity and thus are harder to operate and understand. To
many, they remain alien, slightly threatening things.

We’ve found two effective ways of bridging the communication gap between us,
squishy biological organisms with a talent for social and spatial reasoning, and
computers, unfeeling manipulators of meaningless data. The first is to appeal
to our sense of the physical world and build interfaces that mimic that world
and allow us to manipulate shapes on a screen with our fingers. This works
very well for casual machine interaction.

But we have not yet found a good way to use the point-and-click approach
to communicate things to the computer that the designer of the interface did
not anticipate. For open-ended interfaces, such as instructing the computer to
perform arbitrary tasks, we’ve had more luck with an approach that makes use
of our talent for language: teaching the machine a language.

Human languages allow words and phrases to be combined in many ways,
which allows us to say many different things. Computer languages, though
typically less grammatically flexible, follow a similar principle.

Casual computing has become much more widespread in the past 20 years,
and language-based interfaces, which once were the default way in which peo-
ple interacted with computers, have largely been replaced with graphical inter-
faces. But they are still there, if you know where to look. One such language,

1

JavaScript, is built into almost every web browser and is thus available on just
about every consumer device.

This book intends to make you familiar enough with this language to be able
to make a computer do what you want.

On programming
I do not enlighten those who are not eager to learn, nor arouse those
who are not anxious to give an explanation themselves. If I have
presented one corner of the square and they cannot come back to
me with the other three, I should not go over the points again.
—Confucius

Besides explaining JavaScript, I also will introduce the basic principles of
programming. Programming, it turns out, is hard. The fundamental rules are
typically simple and clear. But programs built on top of these rules tend to
become complex enough to introduce their own rules and complexity. You’re
building your own maze, in a way, and you might just get lost in it.

There will be times when reading this book feels terribly frustrating. If you
are new to programming, there will be a lot of new material to digest. Much of
this material will then be combined in ways that require you to make additional
connections.

It is up to you to make the necessary effort. When you are struggling to
follow the book, do not jump to any conclusions about your own capabilities.
You are fine—you just need to keep at it. Take a break, reread some material,
and always make sure you read and understand the example programs and
exercises. Learning is hard work, but everything you learn is yours and will
make subsequent learning easier.

The computer programmer is a creator of universes for which he [sic]
alone is responsible. Universes of virtually unlimited complexity
can be created in the form of computer programs.
—Joseph Weizenbaum, Computer Power and Human Reason

A program is many things. It is a piece of text typed by a programmer,
it is the directing force that makes the computer do what it does, it is data
in the computer’s memory, yet it controls the actions performed on this same
memory. Analogies that try to compare programs to objects we are familiar
with tend to fall short. A superficially fitting one is that of a machine—lots of

2

separate parts tend to be involved, and to make the whole thing tick, we have
to consider the ways in which these parts interconnect and contribute to the
operation of the whole.

A computer is a machine built to act as a host for these immaterial machines.
Computers themselves can do only stupidly straightforward things. The reason
they are so useful is that they do these things at an incredibly high speed. A
program can ingeniously combine an enormous number of these simple actions
in order to do very complicated things.

To some of us, writing computer programs is a fascinating game. A program
is a building of thought. It is costless to build, it is weightless, and it grows
easily under our typing hands.

But without care, a program’s size and complexity will grow out of control,
confusing even the person who created it. Keeping programs under control is
the main problem of programming. When a program works, it is beautiful. The
art of programming is the skill of controlling complexity. The great program
is subdued—made simple in its complexity.

Many programmers believe that this complexity is best managed by using
only a small set of well-understood techniques in their programs. They have
composed strict rules (“best practices”) prescribing the form programs should
have, and the more zealous among them will consider those who go outside of
this safe little zone to be bad programmers.

What hostility to the richness of programming—to try to reduce it to some-
thing straightforward and predictable, to place a taboo on all the weird and
beautiful programs! The landscape of programming techniques is enormous,
fascinating in its diversity, and still largely unexplored. It is certainly danger-
ous going, luring the inexperienced programmer into all kinds of confusion, but
that only means you should proceed with caution and keep your wits about
you. As you learn there will always be new challenges and new territory to
explore. Programmers who refuse to keep exploring will stagnate, forget their
joy, and get bored with their craft.

Why language matters
In the beginning, at the birth of computing, there were no programming lan-
guages. Programs looked something like this:

00110001 00000000 00000000

00110001 00000001 00000001

00110011 00000001 00000010

01010001 00001011 00000010

3

00100010 00000010 00001000

01000011 00000001 00000000

01000001 00000001 00000001

00010000 00000010 00000000

01100010 00000000 00000000

That is a program to add the numbers from 1 to 10 together and print out the
result: 1 + 2 + ... + 10 = 55. It could run on a simple, hypothetical machine.
To program early computers, it was necessary to set large arrays of switches
in the right position or punch holes in strips of cardboard and feed them to
the computer. You can probably imagine how tedious and error-prone this
procedure was. Even writing simple programs required much cleverness and
discipline. Complex ones were nearly inconceivable.

Of course, manually entering these arcane patterns of bits (the ones and
zeros) did give the programmer a profound sense of being a mighty wizard.
And that has to be worth something in terms of job satisfaction.

Each line of the previous program contains a single instruction. It could be
written in English like this:

1. Store the number 0 in memory location 0.

2. Store the number 1 in memory location 1.

3. Store the value of memory location 1 in memory location 2.

4. Subtract the number 11 from the value in memory location 2.

5. If the value in memory location 2 is the number 0,

continue with instruction 9.

6. Add the value of memory location 1 to memory location 0.

7. Add the number 1 to the value of memory location 1.

8. Continue with instruction 3.

9. Output the value of memory location 0.

Although that is already more readable than the soup of bits, it is still rather
unpleasant. It might help to use names instead of numbers for the instructions
and memory locations.

Set "total" to 0.

Set "count" to 1.

[loop]

Set "compare" to "count".

Subtract 11 from "compare ".

If "compare" is zero , continue at [end].

Add "count" to "total".

Add 1 to "count".

Continue at [loop].

[end]

Output "total".

4

Can you see how the program works at this point? The first two lines give
two memory locations their starting values: total will be used to build up the
result of the computation, and count will keep track of the number that we are
currently looking at. The lines using compare are probably the weirdest ones.
The program wants to see whether count is equal to 11 in order to decide whether
it can stop running. Because our hypothetical machine is rather primitive, it
can only test whether a number is zero and make a decision (or jump) based
on that. So it uses the memory location labeled compare to compute the value
of count - 11 and makes a decision based on that value. The next two lines add
the value of count to the result and increment count by 1 every time the program
has decided that count is not 11 yet.

Here is the same program in JavaScript:

var total = 0, count = 1;

while (count <= 10) {

total += count;

count += 1;

}

console.log(total);

// → 55

This version gives us a few more improvements. Most importantly, there is no
need to specify the way we want the program to jump back and forth anymore.
The while language construct takes care of that. It continues executing the
block (wrapped in braces) below it as long as the condition it was given holds.
That condition is count <= 10, which means “count is less than or equal to 10”.
We no longer have to create a temporary value and compare that to zero, which
was an uninteresting detail. Part of the power of programming languages is
that they take care of uninteresting details for us.

At the end of the program, after the while construct has finished, the console

.log operation is applied to the result in order to write it as output.
Finally, here is what the program could look like if we happened to have

the convenient operations range and sum available, which respectively create a
collection of numbers within a range and compute the sum of a collection of
numbers:

console.log(sum(range(1, 10)));

// → 55

The moral of this story is that the same program can be expressed in long and
short, unreadable and readable ways. The first version of the program was
extremely obscure, whereas this last one is almost English: log the sum of the

5

range of numbers from 1 to 10. (We will see in later chapters how to build
operations like sum and range.)

A good programming language helps the programmer by allowing them to
talk about the actions that the computer has to perform on a higher level. It
helps omit uninteresting details, provides convenient building blocks (such as
while and console.log), allows you to define your own building blocks (such as
sum and range), and makes those blocks easy to compose.

What is JavaScript?
JavaScript was introduced in 1995 as a way to add programs to web pages in
the Netscape Navigator browser. The language has since been adopted by all
other major graphical web browsers. It has made modern web applications
possible—applications with which you can interact directly, without doing a
page reload for every action. But it is also used in more traditional websites to
provide various forms of interactivity and cleverness.

It is important to note that JavaScript has almost nothing to do with the
programming language named Java. The similar name was inspired by mar-
keting considerations, rather than good judgment. When JavaScript was being
introduced, the Java language was being heavily marketed and was gaining
popularity. Someone thought it was a good idea to try to ride along on this
success. Now we are stuck with the name.

After its adoption outside of Netscape, a standard document was written to
describe the way the JavaScript language should work to make sure the various
pieces of software that claimed to support JavaScript were actually talking
about the same language. This is called the ECMAScript standard, after the
Ecma International organization that did the standardization. In practice, the
terms ECMAScript and JavaScript can be used interchangeably—they are two
names for the same language.

There are those who will say terrible things about the JavaScript language.
Many of these things are true. When I was required to write something in
JavaScript for the first time, I quickly came to despise it. It would accept
almost anything I typed but interpret it in a way that was completely different
from what I meant. This had a lot to do with the fact that I did not have a
clue what I was doing, of course, but there is a real issue here: JavaScript is
ridiculously liberal in what it allows. The idea behind this design was that it
would make programming in JavaScript easier for beginners. In actuality, it
mostly makes finding problems in your programs harder because the system
will not point them out to you.

6

This flexibility also has its advantages, though. It leaves space for a lot of
techniques that are impossible in more rigid languages, and as you will see
(for example in Chapter 10) it can be used to overcome some of JavaScript’s
shortcomings. After learning the language properly and working with it for a
while, I have learned to actually like JavaScript.

There have been several versions of JavaScript. ECMAScript version 3 was
the widely supported version in the time of JavaScript’s ascent to dominance,
roughly between 2000 and 2010. During this time, work was underway on
an ambitious version 4, which planned a number of radical improvements and
extensions to the language. Changing a living, widely used language in such
a radical way turned out to be politically difficult, and work on the version 4
was abandoned in 2008, leading to the much less ambitious version 5 coming
out in 2009. We’re now at the point where all major browsers support version
5, which is the language version that this book will be focusing on. A version 6
is in the process of being finalized, and some browsers are starting to support
new features from this version.

Web browsers are not the only platforms on which JavaScript is used. Some
databases, such as MongoDB and CouchDB, use JavaScript as their scripting
and query language. Several platforms for desktop and server programming,
most notably the Node.js project (the subject of Chapter 20) are providing a
powerful environment for programming JavaScript outside of the browser.

Code, and what to do with it
Code is the text that makes up programs. Most chapters in this book con-
tain quite a lot of it. In my experience, reading code and writing code are
indispensable parts of learning to program, so try to not just glance over the
examples. Read them attentively and understand them. This may be slow and
confusing at first, but I promise that you will quickly get the hang of it. The
same goes for the exercises. Don’t assume you understand them until you’ve
actually written a working solution.

I recommend you try your solutions to exercises in an actual JavaScript
interpreter. That way, you’ll get immediate feedback on whether what you are
doing is working, and, I hope, you’ll be tempted to experiment and go beyond
the exercises.

The easiest way to run the example code in the book, and to experiment with
it, is to look it up in the online version of the book at eloquentjavascript.net.
There, you can click any code example to edit and run it and to see the output it
produces. To work on the exercises, go to eloquentjavascript.net/2nd_edition/code,

7

http://eloquentjavascript.net/
http://eloquentjavascript.net/2nd_{}edition/code

which provides starting code for each coding exercise and allows you to look at
the solutions.

If you want to run the programs defined in this book outside of the book’s
sandbox, some care is required. Many examples stand on their own and should
work in any JavaScript environment. But code in later chapters is mostly
written for a specific environment (the browser or Node.js) and can run only
there. In addition, many chapters define bigger programs, and the pieces of
code that appear in them depend on each other or on external files. The
sandbox on the website provides links to Zip files containing all of the scripts
and data files necessary to run the code for a given chapter.

Overview of this book
This book contains roughly three parts. The first 11 chapters discuss the
JavaScript language itself. The next eight chapters are about web browsers
and the way JavaScript is used to program them. Finally, two chapters are
devoted to Node.js, another environment to program JavaScript in.

Throughout the book, there are five project chapters, which describe larger
example programs to give you a taste of real programming. In order of appear-
ance, we will work through building an artificial life simulation, a programming
language, a platform game, a paint program, and a dynamic website.

The language part of the book starts with four chapters to introduce the basic
structure of the JavaScript language. They introduce control structures (such
as the while word you saw in this introduction), functions (writing your own
operations), and data structures. After these, you will be able to write simple
programs. Next, Chapters 5 and 6 introduce techniques to use functions and
objects to write more abstract code and thus keep complexity under control.

After a first project chapter, the first part of the book continues with chap-
ters on error handling and fixing, on regular expressions (an important tool
for working with text data), and on modularity—another weapon against com-
plexity. The second project chapter concludes the first part of the book.

The second part, Chapters 12 to 19, describes the tools that browser JavaScript
has access to. You’ll learn to display things on the screen (Chapters 13 and
16), respond to user input (Chapters 14 and 18), and communicate over the
network (Chapter 17). There are again two project chapters in this part.

After that, Chapter 20 describes Node.js, and Chapter 21 builds a simple
web system using that tool.

8

http://eloquentjavascript.net/2nd_{}edition/code

Typographic conventions
In this book, text written in a monospaced font will represent elements of programs—
sometimes they are self-sufficient fragments, and sometimes they just refer to
part of a nearby program. Programs (of which you have already seen a few),
are written as follows:

function fac(n) {

if (n == 0)

return 1;

else

return fac(n - 1) * n;

}

Sometimes, in order to show the output that a program produces, the expected
output is written after it, with two slashes and an arrow in front.

console.log(fac(8));

// → 40320

Good luck!

9

“Below the surface of the machine, the program moves. Without
effort, it expands and contracts. In great harmony, electrons scatter
and regroup. The forms on the monitor are but ripples on the water.
The essence stays invisibly below.”

—Master Yuan-Ma, The Book of Programming

1 Values, Types, and Operators
Inside the computer’s world, there is only data. You can read data, modify
data, create new data—but anything that isn’t data simply does not exist. All
this data is stored as long sequences of bits and is thus fundamentally alike.

Bits are any kind of two-valued things, usually described as zeros and ones.
Inside the computer, they take forms such as a high or low electrical charge,
a strong or weak signal, or a shiny or dull spot on the surface of a CD. Any
piece of discrete information can be reduced to a sequence of zeros and ones
and thus represented in bits.

For example, think about how you might show the number 13 in bits. It
works the same way you write decimal numbers, but instead of 10 different
digits, you have only 2, and the weight of each increases by a factor of 2 from
right to left. Here are the bits that make up the number 13, with the weights
of the digits shown below them:

0 0 0 0 1 1 0 1

128 64 32 16 8 4 2 1

So that’s the binary number 00001101, or 8 + 4 + 1, which equals 13.

Values
Imagine a sea of bits. An ocean of them. A typical modern computer has more
than 30 billion bits in its volatile data storage. Nonvolatile storage (the hard
disk or equivalent) tends to have yet a few orders of magnitude more.

10

To be able to work with such quantities of bits without getting lost, you can
separate them into chunks that represent pieces of information. In a JavaScript
environment, those chunks are called values. Though all values are made of
bits, they play different roles. Every value has a type that determines its role.
There are six basic types of values in JavaScript: numbers, strings, Booleans,
objects, functions, and undefined values.

To create a value, you must merely invoke its name. This is convenient.
You don’t have to gather building material for your values or pay for them.
You just call for one, and woosh, you have it. They are not created from thin
air, of course. Every value has to be stored somewhere, and if you want to
use a gigantic amount of them at the same time, you might run out of bits.
Fortunately, this is a problem only if you need them all simultaneously. As
soon as you no longer use a value, it will dissipate, leaving behind its bits to
be recycled as building material for the next generation of values.

This chapter introduces the atomic elements of JavaScript programs, that is,
the simple value types and the operators that can act on such values.

Numbers
Values of the number type are, unsurprisingly, numeric values. In a JavaScript
program, they are written as follows:

13

Use that in a program, and it will cause the bit pattern for the number 13 to
come into existence inside the computer’s memory.

JavaScript uses a fixed number of bits, namely 64 of them, to store a single
number value. There are only so many patterns you can make with 64 bits,
which means that the amount of different numbers that can be represented is
limited. For N decimal digits, the amount of numbers that can be represented is

11

10N . Similarly, given 64 binary digits, you can represent 264 different numbers,
which is about 18 quintillion (an 18 with 18 zeros after it). This is a lot.

Computer memory used to be a lot smaller, and people tended to use groups
of 8 or 16 bits to represent their numbers. It was easy to accidentally overflow
such small numbers—to end up with a number that did not fit into the given
amount of bits. Today, even personal computers have plenty of memory, so you
are free to use 64-bit chunks, which means you need to worry about overflow
only when dealing with truly astronomical numbers.

Not all whole numbers below 18 quintillion fit in a JavaScript number,
though. Those bits also store negative numbers, so one bit indicates the sign of
the number. A bigger issue is that nonwhole numbers must also be represented.
To do this, some of the bits are used to store the position of the decimal point.
The actual maximum whole number that can be stored is more in the range of
9 quadrillion (15 zeros), which is still pleasantly huge.

Fractional numbers are written by using a dot.

9.81

For very big or very small numbers, you can also use scientific notation by
adding an “e” (for “exponent”), followed by the exponent of the number:

2.998e8

That is 2.998 × 108 = 299,800,000.
Calculations with whole numbers (also called integers) smaller than the

aforementioned 9 quadrillion are guaranteed to always be precise. Unfortu-
nately, calculations with fractional numbers are generally not. Just as π (pi)
cannot be precisely expressed by a finite number of decimal digits, many num-
bers lose some precision when only 64 bits are available to store them. This
is a shame, but it causes practical problems only in specific situations. The
important thing is to be aware of it and treat fractional digital numbers as
approximations, not as precise values.

Arithmetic
The main thing to do with numbers is arithmetic. Arithmetic operations such
as addition or multiplication take two number values and produce a new number
from them. Here is what they look like in JavaScript:

100 + 4 * 11

The + and * symbols are called operators. The first stands for addition, and

12

the second stands for multiplication. Putting an operator between two values
will apply it to those values and produce a new value.

Does the example mean “add 4 and 100, and multiply the result by 11”, or
is the multiplication done before the adding? As you might have guessed, the
multiplication happens first. But as in mathematics, you can change this by
wrapping the addition in parentheses.

(100 + 4) * 11

For subtraction, there is the - operator, and division can be done with the /

operator.
When operators appear together without parentheses, the order in which

they are applied is determined by the precedence of the operators. The example
shows that multiplication comes before addition. The / operator has the same
precedence as *. Likewise for + and -. When multiple operators with the same
precedence appear next to each other, as in 1 - 2 + 1, they are applied left to
right: (1 - 2)+ 1.

These rules of precedence are not something you should worry about. When
in doubt, just add parentheses.

There is one more arithmetic operator, which you might not immediately
recognize. The % symbol is used to represent the remainder operation. X % Y is
the remainder of dividing X by Y. For example, 314 % 100 produces 14, and 144

% 12 gives 0. Remainder’s precedence is the same as that of multiplication and
division. You’ll often see this operator referred to as modulo, though technically
remainder is more accurate.

Special numbers
There are three special values in JavaScript that are considered numbers but
don’t behave like normal numbers.

The first two are Infinity and -Infinity, which represent the positive and
negative infinities. Infinity - 1 is still Infinity, and so on. Don’t put too much
trust in infinity-based computation. It isn’t mathematically solid, and it will
quickly lead to our next special number: NaN.

NaN stands for “not a number”, even though it is a value of the number type.
You’ll get this result when you, for example, try to calculate 0 / 0 (zero divided
by zero), Infinity - Infinity, or any number of other numeric operations that
don’t yield a precise, meaningful result.

13

Strings
The next basic data type is the string. Strings are used to represent text. They
are written by enclosing their content in quotes.

"Patch my boat with chewing gum"

' Monkeys wave goodbye '

Both single and double quotes can be used to mark strings as long as the quotes
at the start and the end of the string match.

Almost anything can be put between quotes, and JavaScript will make a
string value out of it. But a few characters are more difficult. You can imagine
how putting quotes between quotes might be hard. Newlines (the characters
you get when you press Enter) also can’t be put between quotes. The string
has to stay on a single line.

To make it possible to include such characters in a string, the following nota-
tion is used: whenever a backslash (\) is found inside quoted text, it indicates
that the character after it has a special meaning. This is called escaping the
character. A quote that is preceded by a backslash will not end the string but
be part of it. When an n character occurs after a backslash, it is interpreted
as a newline. Similarly, a t after a backslash means a tab character. Take the
following string:

"This is the first line\nAnd this is the second"

The actual text contained is this:

This is the first line

And this is the second

There are, of course, situations where you want a backslash in a string to be just
a backslash, not a special code. If two backslashes follow each other, they will
collapse together, and only one will be left in the resulting string value. This
is how the string “A newline character is written like "\n".” can be expressed:

"A newline character is written like \"\\n\"."

Strings cannot be divided, multiplied, or subtracted, but the + operator can
be used on them. It does not add, but it concatenates—it glues two strings
together. The following line will produce the string "concatenate":

"con" + "cat" + "e" + "nate"

There are more ways of manipulating strings, which we will discuss when we
get to methods in Chapter 4.

14

Unary operators
Not all operators are symbols. Some are written as words. One example is the
typeof operator, which produces a string value naming the type of the value
you give it.

console.log(typeof 4.5)

// → number

console.log(typeof "x")

// → string

We will use console.log in example code to indicate that we want to see the
result of evaluating something. When you run such code, the value produced
should be shown on the screen, though how it appears will depend on the
JavaScript environment you use to run it.

The other operators we saw all operated on two values, but typeof takes only
one. Operators that use two values are called binary operators, while those that
take one are called unary operators. The minus operator can be used both as
a binary operator and as a unary operator.

console.log(- (10 - 2))

// → -8

Boolean values
Often, you will need a value that simply distinguishes between two possibilities,
like “yes” and “no” or “on” and “off”. For this, JavaScript has a Boolean type,
which has just two values: true and false (which are written simply as those
words).

Comparisons
Here is one way to produce Boolean values:

console.log(3 > 2)

// → true

console.log(3 < 2)

// → false

The > and < signs are the traditional symbols for “is greater than” and “is less
than”, respectively. They are binary operators. Applying them results in a
Boolean value that indicates whether they hold true in this case.

15

Strings can be compared in the same way.

console.log(" Aardvark" < "Zoroaster ")

// → true

The way strings are ordered is more or less alphabetic: uppercase letters are
always “less” than lowercase ones, so "Z" < "a" is true, and non-alphabetic char-
acters (!, -, and so on) are also included in the ordering. The actual comparison
is based on the Unicode standard. This standard assigns a number to virtually
every character you would ever need, including characters from Greek, Arabic,
Japanese, Tamil, and so on. Having such numbers is useful for storing strings
inside a computer because it makes it possible to represent them as a sequence
of numbers. When comparing strings, JavaScript goes over them from left to
right, comparing the numeric codes of the characters one by one.

Other similar operators are >= (greater than or equal to), <= (less than or
equal to), == (equal to), and != (not equal to).

console.log("Itchy" != "Scratchy ")

// → true

There is only one value in JavaScript that is not equal to itself, and that is NaN,
which stands for “not a number”.

console.log(NaN == NaN)

// → false

NaN is supposed to denote the result of a nonsensical computation, and as such,
it isn’t equal to the result of any other nonsensical computations.

Logical operators
There are also some operations that can be applied to Boolean values them-
selves. JavaScript supports three logical operators: and, or, and not. These
can be used to “reason” about Booleans.

The && operator represents logical and. It is a binary operator, and its result
is true only if both the values given to it are true.

console.log(true && false)

// → false

console.log(true && true)

// → true

The || operator denotes logical or. It produces true if either of the values given
to it is true.

16

console.log(false || true)

// → true

console.log(false || false)

// → false

Not is written as an exclamation mark (!). It is a unary operator that flips the
value given to it—!true produces false and !false gives true.

When mixing these Boolean operators with arithmetic and other operators,
it is not always obvious when parentheses are needed. In practice, you can
usually get by with knowing that of the operators we have seen so far, || has
the lowest precedence, then comes &&, then the comparison operators (>, ==,
and so on), and then the rest. This order has been chosen such that, in typical
expressions like the following one, as few parentheses as possible are necessary:

1 + 1 == 2 && 10 * 10 > 50

The last logical operator I will discuss is not unary, not binary, but ternary,
operating on three values. It is written with a question mark and a colon, like
this:

console.log(true ? 1 : 2);

// → 1

console.log(false ? 1 : 2);

// → 2

This one is called the conditional operator (or sometimes just ternary operator
since it is the only such operator in the language). The value on the left of the
question mark “picks” which of the other two values will come out. When it
is true, the middle value is chosen, and when it is false, the value on the right
comes out.

Undefined values
There are two special values, written null and undefined, that are used to denote
the absence of a meaningful value. They are themselves values, but they carry
no information.

Many operations in the language that don’t produce a meaningful value
(you’ll see some later) yield undefined simply because they have to yield some
value.

The difference in meaning between undefined and null is an accident of JavaScript’s
design, and it doesn’t matter most of the time. In the cases where you actu-
ally have to concern yourself with these values, I recommend treating them as

17

interchangeable (more on that in a moment).

Automatic type conversion
In the introduction, I mentioned that JavaScript goes out of its way to accept
almost any program you give it, even programs that do odd things. This is
nicely demonstrated by the following expressions:

console.log(8 * null)

// → 0

console.log ("5" - 1)

// → 4

console.log ("5" + 1)

// → 51

console.log("five" * 2)

// → NaN

console.log(false == 0)

// → true

When an operator is applied to the “wrong” type of value, JavaScript will
quietly convert that value to the type it wants, using a set of rules that often
aren’t what you want or expect. This is called type coercion. So the null in the
first expression becomes 0, and the "5" in the second expression becomes 5 (from
string to number). Yet in the third expression, + tries string concatenation
before numeric addition, so the 1 is converted to "1" (from number to string).

When something that doesn’t map to a number in an obvious way (such as
"five" or undefined) is converted to a number, the value NaN is produced. Further
arithmetic operations on NaN keep producing NaN, so if you find yourself getting
one of those in an unexpected place, look for accidental type conversions.

When comparing values of the same type using ==, the outcome is easy to
predict: you should get true when both values are the same, except in the case
of NaN. But when the types differ, JavaScript uses a complicated and confusing
set of rules to determine what to do. In most cases, it just tries to convert one
of the values to the other value’s type. However, when null or undefined occurs
on either side of the operator, it produces true only if both sides are one of null
or undefined.

console.log(null == undefined);

// → true

console.log(null == 0);

// → false

That last piece of behavior is often useful. When you want to test whether a

18

value has a real value instead of null or undefined, you can simply compare it to
null with the == (or !=) operator.

But what if you want to test whether something refers to the precise value
false? The rules for converting strings and numbers to Boolean values state
that 0, NaN, and the empty string ("") count as false, while all the other values
count as true. Because of this, expressions like 0 == false and "" == false are also
true. For cases like this, where you do not want any automatic type conversions
to happen, there are two extra operators: === and !==. The first tests whether
a value is precisely equal to the other, and the second tests whether it is not
precisely equal. So "" === false is false as expected.

I recommend using the three-character comparison operators defensively to
prevent unexpected type conversions from tripping you up. But when you’re
certain the types on both sides will be the same, there is no problem with using
the shorter operators.

Short-circuiting of logical operators
The logical operators && and || handle values of different types in a peculiar
way. They will convert the value on their left side to Boolean type in order
to decide what to do, but depending on the operator and the result of that
conversion, they return either the original left-hand value or the right-hand
value.

The || operator, for example, will return the value to its left when that can
be converted to true and will return the value on its right otherwise. This
conversion works as you’d expect for Boolean values and should do something
analogous for values of other types.

console.log(null || "user")

// → user

console.log("Karl" || "user")

// → Karl

This functionality allows the || operator to be used as a way to fall back on a
default value. If you give it an expression that might produce an empty value
on the left, the value on the right will be used as a replacement in that case.

The && operator works similarly, but the other way around. When the value
to its left is something that converts to false, it returns that value, and otherwise
it returns the value on its right.

Another important property of these two operators is that the expression to
their right is evaluated only when necessary. In the case of true || X, no matter
what X is—even if it’s an expression that does something terrible—the result

19

will be true, and X is never evaluated. The same goes for false && X, which is
false and will ignore X. This is called short-circuit evaluation.

The conditional operator works in a similar way. The first expression is
always evaluated, but the second or third value, the one that is not picked, is
not.

Summary
We looked at four types of JavaScript values in this chapter: numbers, strings,
Booleans, and undefined values.

Such values are created by typing in their name (true, null) or value (13,
"abc"). You can combine and transform values with operators. We saw binary
operators for arithmetic (+, -, *, /, and %), string concatenation (+), comparison
(==, !=, ===, !==, <, >, <=, >=), and logic (&&, ||), as well as several unary operators
(- to negate a number, ! to negate logically, and typeof to find a value’s type)
and a ternary operator (?:) to pick one of two values based on a third value.

This gives you enough information to use JavaScript as a pocket calculator,
but not much more. The next chapter will start tying these expressions together
into basic programs.

20

“And my heart glows bright red under my filmy, translucent skin and
they have to administer 10cc of JavaScript to get me to come back.
(I respond well to toxins in the blood.) Man, that stuff will kick the
peaches right out your gills!”

—_why, Why’s (Poignant) Guide to Ruby

2 Program Structure
In this chapter, we will start to do things that can actually be called program-
ming. We will expand our command of the JavaScript language beyond the
nouns and sentence fragments we’ve seen so far, to the point where we can
express some meaningful prose.

Expressions and statements
In Chapter 1, we made some values and then applied operators to them to get
new values. Creating values like this is an essential part of every JavaScript
program, but it is only a part.

A fragment of code that produces a value is called an expression. Every
value that is written literally (such as 22 or "psychoanalysis") is an expression.
An expression between parentheses is also an expression, as is a binary operator
applied to two expressions or a unary operator applied to one.

This shows part of the beauty of a language-based interface. Expressions
can nest in a way very similar to the way subsentences in human languages
are nested—a subsentence can contain its own subsentences, and so on. This
allows us to combine expressions to express arbitrarily complex computations.

If an expression corresponds to a sentence fragment, a JavaScript statement
corresponds to a full sentence in a human language. A program is simply a list
of statements.

The simplest kind of statement is an expression with a semicolon after it.
This is a program:

1;

!false;

It is a useless program, though. An expression can be content to just produce
a value, which can then be used by the enclosing expression. A statement
stands on its own and amounts to something only if it affects the world. It
could display something on the screen—that counts as changing the world—
or it could change the internal state of the machine in a way that will affect
the statements that come after it. These changes are called side effects. The

21

statements in the previous example just produce the values 1 and true and then
immediately throw them away. This leaves no impression on the world at all.
When executing the program, nothing observable happens.

In some cases, JavaScript allows you to omit the semicolon at the end of a
statement. In other cases, it has to be there, or the next line will be treated
as part of the same statement. The rules for when it can be safely omitted
are somewhat complex and error-prone. In this book, every statement that
needs a semicolon will always be terminated by one. I recommend you do the
same in your own programs, at least until you’ve learned more about subtleties
involved in leaving out semicolons.

Variables
How does a program keep an internal state? How does it remember things?
We have seen how to produce new values from old values, but this does not
change the old values, and the new value has to be immediately used or it will
dissipate again. To catch and hold values, JavaScript provides a thing called a
variable.

var caught = 5 * 5;

And that gives us our second kind of statement. The special word (keyword)
var indicates that this sentence is going to define a variable. It is followed by
the name of the variable and, if we want to immediately give it a value, by an
= operator and an expression.

The previous statement creates a variable called caught and uses it to grab
hold of the number that is produced by multiplying 5 by 5.

After a variable has been defined, its name can be used as an expression. The
value of such an expression is the value the variable currently holds. Here’s an
example:

var ten = 10;

console.log(ten * ten);

// → 100

Variable names can be any word that isn’t a reserved word (such as var). They
may not include spaces. Digits can also be part of variable names—catch22 is a
valid name, for example—but the name must not start with a digit. A variable
name cannot include punctuation, except for the characters $ and _.

When a variable points at a value, that does not mean it is tied to that
value forever. The = operator can be used at any time on existing variables to

22

disconnect them from their current value and have them point to a new one.

var mood = "light";

console.log(mood);

// → light

mood = "dark";

console.log(mood);

// → dark

You should imagine variables as tentacles, rather than boxes. They do not
contain values; they grasp them—two variables can refer to the same value. A
program can access only the values that it still has a hold on. When you need
to remember something, you grow a tentacle to hold on to it or you reattach
one of your existing tentacles to it.

Let’s look at an example. To remember the number of dollars that Luigi still
owes you, you create a variable. And then when he pays back $35, you give
this variable a new value.

var luigisDebt = 140;

luigisDebt = luigisDebt - 35;

console.log(luigisDebt);

// → 105

When you define a variable without giving it a value, the tentacle has nothing
to grasp, so it ends in thin air. If you ask for the value of an empty variable,
you’ll get the value undefined.

A single var statement may define multiple variables. The definitions must
be separated by commas.

var one = 1, two = 2;

23

console.log(one + two);

// → 3

Keywords and reserved words
Words with a special meaning, such as var, are keywords, and they may not be
used as variable names. There are also a number of words that are “reserved
for use” in future versions of JavaScript. These are also officially not allowed
to be used as variable names, though some JavaScript environments do allow
them. The full list of keywords and reserved words is rather long.

break case catch class const continue debugger

default delete do else enum export extends false

finally for function if implements import in

instanceof interface let new null package private

protected public return static super switch this

throw true try typeof var void while with yield

Don’t worry about memorizing these, but remember that this might be the
problem when a variable definition does not work as expected.

The environment
The collection of variables and their values that exist at a given time is called
the environment. When a program starts up, this environment is not empty.
It always contains variables that are part of the language standard, and most
of the time, it has variables that provide ways to interact with the surrounding
system. For example, in a browser, there are variables and functions to inspect
and influence the currently loaded website and to read mouse and keyboard
input.

Functions
A lot of the values provided in the default environment have the type function.
A function is a piece of program wrapped in a value. Such values can be applied
in order to run the wrapped program. For example, in a browser environment,
the variable alert holds a function that shows a little dialog box with a message.
It is used like this:

alert("Good morning !");

24

Executing a function is called invoking, calling, or applying it. You can call a
function by putting parentheses after an expression that produces a function
value. Usually you’ll directly use the name of the variable that holds the
function. The values between the parentheses are given to the program inside
the function. In the example, the alert function uses the string that we give
it as the text to show in the dialog box. Values given to functions are called
arguments. The alert function needs only one of them, but other functions
might need a different number or different types of arguments.

The console.log function
The alert function can be useful as an output device when experimenting, but
clicking away all those little windows will get on your nerves. In past examples,
we’ve used console.log to output values. Most JavaScript systems (including all
modern web browsers and Node.js) provide a console.log function that writes
out its arguments to some text output device. In browsers, the output lands in
the JavaScript console. This part of the browser interface is hidden by default,
but most browsers open it when you press F12 or, on Mac, when you press
Command-Option-I. If that does not work, search through the menus for an
item named “web console” or “developer tools”.

var x = 30;

console.log("the value of x is", x);

// → the value of x is 30

Though variable names cannot contain period characters, console.log clearly
has one. This is because console.log isn’t a simple variable. It is actually an
expression that retrieves the log property from the value held by the console

variable. We will find out exactly what this means in Chapter 4.

Return values
Showing a dialog box or writing text to the screen is a side effect. A lot of
functions are useful because of the side effects they produce. Functions may
also produce values, and in that case, they don’t need to have a side effect to be

25

useful. For example, the function Math.max takes any number of number values
and gives back the greatest.

console.log(Math.max(2, 4));

// → 4

When a function produces a value, it is said to return that value. Anything
that produces a value is an expression in JavaScript, which means function
calls can be used within larger expressions. Here a call to Math.min, which is the
opposite of Math.max, is used as an input to the plus operator:

console.log(Math.min(2, 4) + 100);

// → 102

The next chapter explains how to write your own functions.

prompt and confirm
Browser environments contain other functions besides alert for popping up
windows. You can ask the user an OK/Cancel question using confirm. This
returns a Boolean: true if the user clicks OK and false if the user clicks Cancel.

confirm ("Shall we, then ?");

The prompt function can be used to ask an “open” question. The first argument
is the question, the second one is the text that the user starts with. A line of
text can be typed into the dialog window, and the function will return this text
as a string.

prompt ("Tell me everything you know.", "...");

These two functions aren’t used much in modern web programming, mostly

26

because you have no control over the way the resulting windows look, but they
are useful for toy programs and experiments.

Control flow
When your program contains more than one statement, the statements are
executed, predictably, from top to bottom. As a basic example, this program
has two statements. The first one asks the user for a number, and the second,
which is executed afterward, shows the square of that number.

var theNumber = Number(prompt ("Pick a number", ""));

alert("Your number is the square root of " +

theNumber * theNumber);

The function Number converts a value to a number. We need that conversion
because the result of prompt is a string value, and we want a number. There are
similar functions called String and Boolean that convert values to those types.

Here is the rather trivial schematic representation of straight control flow:

Conditional execution
Executing statements in straight-line order isn’t the only option we have. An
alternative is conditional execution, where we choose between two different
routes based on a Boolean value, like this:

Conditional execution is written with the if keyword in JavaScript. In the
simple case, we just want some code to be executed if, and only if, a certain
condition holds. For example, in the previous program, we might want to show
the square of the input only if the input is actually a number.

var theNumber = Number(prompt ("Pick a number", ""));

if (! isNaN(theNumber))

alert("Your number is the square root of " +

theNumber * theNumber);

27

With this modification, if you enter “cheese”, no output will be shown.
The keyword if executes or skips a statement depending on the value of

a Boolean expression. The deciding expression is written after the keyword,
between parentheses, followed by the statement to execute.

The isNaN function is a standard JavaScript function that returns true only if
the argument it is given is NaN. The Number function happens to return NaN when
you give it a string that doesn’t represent a valid number. Thus, the condition
translates to “unless theNumber is not-a-number, do this”.

You often won’t just have code that executes when a condition holds true,
but also code that handles the other case. This alternate path is represented
by the second arrow in the diagram. The else keyword can be used, together
with if, to create two separate, alternative execution paths.

var theNumber = Number(prompt ("Pick a number", ""));

if (! isNaN(theNumber))

alert("Your number is the square root of " +

theNumber * theNumber);

else

alert("Hey. Why didn ' t you give me a number ?");

If we have more than two paths to choose from, multiple if/else pairs can be
“chained” together. Here’s an example:

var num = Number(prompt ("Pick a number", "0"));

if (num < 10)

alert("Small");

else if (num < 100)

alert(" Medium ");

else

alert("Large");

The program will first check whether num is less than 10. If it is, it chooses that
branch, shows "Small", and is done. If it isn’t, it takes the else branch, which
itself contains a second if. If the second condition (< 100) holds, that means
the number is between 10 and 100, and "Medium" is shown. If it doesn’t, the
second, and last, else branch is chosen.

The flow chart for this program looks something like this:

28

while and do loops
Consider a program that prints all even numbers from 0 to 12. One way to
write this is as follows:

console.log(0);

console.log(2);

console.log(4);

console.log(6);

console.log(8);

console.log (10);

console.log (12);

That works, but the idea of writing a program is to make something less work,
not more. If we needed all even numbers less than 1,000, the previous would be
unworkable. What we need is a way to repeat some code. This form of control
flow is called a loop:

Looping control flow allows us to go back to some point in the program where
we were before and repeat it with our current program state. If we combine
this with a variable that counts, we can do something like this:

var number = 0;

while (number <= 12) {

console.log(number);

number = number + 2;

}

// → 0

// → 2

// ... etcetera

A statement starting with the keyword while creates a loop. The word while is
followed by an expression in parentheses and then a statement, much like if.
The loop executes that statement as long as the expression produces a value
that is true when converted to Boolean type.

In this loop, we want to both print the current number and add two to our
variable. Whenever we need to execute multiple statements inside a loop, we
wrap them in curly braces ({ and }). Braces do for statements what parentheses
do for expressions: they group them together, making them count as a single
statement. A sequence of statements wrapped in braces is called a block.

29

Many JavaScript programmers wrap every single loop or if body in braces.
They do this both for the sake of consistency and to avoid having to add or
remove braces when changing the number of statements in the body later. In
this book, I will write most single-statement bodies without braces, since I
value brevity. You are free to go with whichever style you prefer.

The variable number demonstrates the way a variable can track the progress of
a program. Every time the loop repeats, number is incremented by 2. Then, at
the beginning of every repetition, it is compared with the number 12 to decide
whether the program has done all the work it intended to do.

As an example that actually does something useful, we can now write a
program that calculates and shows the value of 210 (2 to the 10th power). We
use two variables: one to keep track of our result and one to count how often
we have multiplied this result by 2. The loop tests whether the second variable
has reached 10 yet and then updates both variables.

var result = 1;

var counter = 0;

while (counter < 10) {

result = result * 2;

counter = counter + 1;

}

console.log(result);

// → 1024

The counter could also start at 1 and check for <= 10, but, for reasons that will
become apparent in Chapter 4, it is a good idea to get used to counting from
0.

The do loop is a control structure similar to the while loop. It differs only on
one point: a do loop always executes its body at least once, and it starts testing
whether it should stop only after that first execution. To reflect this, the test
appears after the body of the loop:

do {

var yourName = prompt ("Who are you?");

} while (! yourName);

console.log(yourName);

This program will force you to enter a name. It will ask again and again until
it gets something that is not an empty string. Applying the ! operator will
convert a value to Boolean type before negating it, and all strings except ""

convert to true. This means the loop continues going round until you provide
a name that is not the empty string.

30

Indenting Code
You’ve probably noticed the spaces I put in front of some statements. In
JavaScript, these are not required—the computer will accept the program just
fine without them. In fact, even the line breaks in programs are optional. You
could write a program as a single long line if you felt like it. The role of the
indentation inside blocks is to make the structure of the code stand out. In
complex code, where new blocks are opened inside other blocks, it can become
hard to see where one block ends and another begins. With proper indentation,
the visual shape of a program corresponds to the shape of the blocks inside it.
I like to use two spaces for every open block, but tastes differ—some people
use four spaces, and some people use tab characters.

for loops
Many loops follow the pattern seen in the previous while examples. First, a
“counter” variable is created to track the progress of the loop. Then comes a
while loop, whose test expression usually checks whether the counter has reached
some boundary yet. At the end of the loop body, the counter is updated to
track progress.

Because this pattern is so common, JavaScript and similar languages provide
a slightly shorter and more comprehensive form, the for loop.

for (var number = 0; number <= 12; number = number + 2)

console.log(number);

// → 0

// → 2

// ... etcetera

This program is exactly equivalent to the earlier even-number-printing example.
The only change is that all the statements that are related to the “state” of
the loop are now grouped together.

The parentheses after a for keyword must contain two semicolons. The part
before the first semicolon initializes the loop, usually by defining a variable.
The second part is the expression that checks whether the loop must continue.
The final part updates the state of the loop after every iteration. In most cases,
this is shorter and clearer than a while construct.

Here is the code that computes 210, using for instead of while:

var result = 1;

for (var counter = 0; counter < 10; counter = counter + 1)

31

result = result * 2;

console.log(result);

// → 1024

Note that even though no block is opened with a {, the statement in the loop
is still indented two spaces to make it clear that it “belongs” to the line before
it.

Breaking Out of a Loop
Having the loop’s condition produce false is not the only way a loop can finish.
There is a special statement called break that has the effect of immediately
jumping out of the enclosing loop.

This program illustrates the break statement. It finds the first number that
is both greater than or equal to 20 and divisible by 7.

for (var current = 20; ; current ++) {

if (current % 7 == 0)

break;

}

console.log(current);

// → 21

Using the remainder (%) operator is an easy way to test whether a number is
divisible by another number. If it is, the remainder of their division is zero.

The for construct in the example does not have a part that checks for the end
of the loop. This means that the loop will never stop unless the break statement
inside is executed.

If you were to leave out that break statement or accidentally write a condition
that always produces true, your program would get stuck in an infinite loop. A
program stuck in an infinite loop will never finish running, which is usually a
bad thing.

The continue keyword is similar to break, in that it influences the progress of
a loop. When continue is encountered in a loop body, control jumps out of the
body and continues with the loop’s next iteration.

Updating variables succinctly
Especially when looping, a program often needs to “update” a variable to hold
a value based on that variable’s previous value.

32

counter = counter + 1;

JavaScript provides a shortcut for this:

counter += 1;

Similar shortcuts work for many other operators, such as result *= 2 to double
result or counter -= 1 to count downward.

This allows us to shorten our counting example a little more.

for (var number = 0; number <= 12; number += 2)

console.log(number);

For counter += 1 and counter -= 1, there are even shorter equivalents: counter++

and counter--.

Dispatching on a value with switch
It is common for code to look like this:

if (variable == "value1 ") action1 ();

else if (variable == "value2 ") action2 ();

else if (variable == "value3 ") action3 ();

else defaultAction ();

There is a construct called switch that is intended to solve such a “dispatch” in
a more direct way. Unfortunately, the syntax JavaScript uses for this (which
it inherited from the C/Java line of programming languages) is somewhat
awkward—a chain of if statements often looks better. Here is an example:

switch (prompt ("What is the weather like ?")) {

case "rainy":

console.log(" Remember to bring an umbrella .");

break;

case "sunny":

console.log("Dress lightly .");

case "cloudy ":

console.log("Go outside .");

break;

default:

console.log(" Unknown weather type !");

break;

}

You may put any number of case labels inside the block opened by switch. The

33

program will jump to the label that corresponds to the value that switch was
given or to default if no matching value is found. It starts executing statements
there, even if they’re under another label, until it reaches a break statement.
In some cases, such as the "sunny" case in the example, this can be used to
share some code between cases (it recommends going outside for both sunny
and cloudy weather). But beware: it is easy to forget such a break, which will
cause the program to execute code you do not want executed.

Capitalization
Variable names may not contain spaces, yet it is often helpful to use multiple
words to clearly describe what the variable represents. These are pretty much
your choices for writing a variable name with several words in it:

fuzzylittleturtle

fuzzy_little_turtle

FuzzyLittleTurtle

fuzzyLittleTurtle

The first style can be hard to read. Personally, I like the look of the underscores,
though that style is a little painful to type. The standard JavaScript functions,
and most JavaScript programmers, follow the bottom style—they capitalize
every word except the first. It is not hard to get used to little things like that,
and code with mixed naming styles can be jarring to read, so we will just follow
this convention.

In a few cases, such as the Number function, the first letter of a variable is
also capitalized. This was done to mark this function as a constructor. What
a constructor is will become clear in Chapter 6. For now, the important thing
is not to be bothered by this apparent lack of consistency.

Comments
Often, raw code does not convey all the information you want a program to
convey to human readers, or it conveys it in such a cryptic way that people
might not understand it. At other times, you might just feel poetic or want
to include some thoughts as part of your program. This is what comments are
for.

A comment is a piece of text that is part of a program but is completely
ignored by the computer. JavaScript has two ways of writing comments. To

34

write a single-line comment, you can use two slash characters (//) and then the
comment text after it.

var accountBalance = calculateBalance(account);

// It ' s a green hollow where a river sings

accountBalance.adjust ();

// Madly catching white tatters in the grass.

var report = new Report ();

// Where the sun on the proud mountain rings:

addToReport(accountBalance , report);

// It ' s a little valley , foaming like light in a glass.

A // comment goes only to the end of the line. A section of text between /* and
*/ will be ignored, regardless of whether it contains line breaks. This is often
useful for adding blocks of information about a file or a chunk of program.

/*

I first found this number scrawled on the back of one of

my notebooks a few years ago. Since then , it has often

dropped by, showing up in phone numbers and the serial

numbers of products that I ' ve bought. It obviously likes

me, so I ' ve decided to keep it.

*/

var myNumber = 11213;

Summary
You now know that a program is built out of statements, which themselves
sometimes contain more statements. Statements tend to contain expressions,
which themselves can be built out of smaller expressions.

Putting statements after one another gives you a program that is executed
from top to bottom. You can introduce disturbances in the flow of control by
using conditional (if, else, and switch) and looping (while, do, and for) state-
ments.

Variables can be used to file pieces of data under a name, and they are useful
for tracking state in your program. The environment is the set of variables
that are defined. JavaScript systems always put a number of useful standard
variables into your environment.

Functions are special values that encapsulate a piece of program. You can
invoke them by writing functionName(argument1, argument2). Such a function call
is an expression, and may produce a value.

35

Exercises
If you are unsure how to try your solutions to exercises, refer to the introduc-
tion.

Each exercise starts with a problem description. Read that and try to solve
the exercise. If you run into problems, consider reading the hints (!interac-
tive after the exercise!)at the end of the book. Full solutions to the exer-
cises are not included in this book, but you can find them online at eloquent-
javascript.net/code. If you want to learn something from the exercises, I rec-
ommend looking at the solutions only after you’ve solved the exercise, or at
least after you’ve attacked it long and hard enough to have a slight headache.

Looping a triangle
Write a loop that makes seven calls to console.log to output the following tri-
angle:

#

##

###

####

#####

######

#######

It may be useful to know that you can find the length of a string by writing
.length after it.

var abc = "abc";

console.log(abc.length);

// → 3

FizzBuzz
Write a program that uses console.log to print all the numbers from 1 to 100,
with two exceptions. For numbers divisible by 3, print "Fizz" instead of the
number, and for numbers divisible by 5 (and not 3), print "Buzz" instead.

When you have that working, modify your program to print "FizzBuzz", for
numbers that are divisible by both 3 and 5 (and still print "Fizz" or "Buzz" for
numbers divisible by only one of those).

(This is actually an interview question that has been claimed to weed out
a significant percentage of programmer candidates. So if you solved it, you’re

36

http://eloquentjavascript.net/2nd_{}edition/code
http://eloquentjavascript.net/2nd_{}edition/code

now allowed to feel good about yourself.)

Chess board
Write a program that creates a string that represents an 8×8 grid, using newline
characters to separate lines. At each position of the grid there is either a space
or a “#” character. The characters should form a chess board.

Passing this string to console.log should show something like this:

#

#

#

#

#

#

#

#

When you have a program that generates this pattern, define a variable size = 8

and change the program so that it works for any size, outputting a grid of the
given width and height.

37

“People think that computer science is the art of geniuses but the
actual reality is the opposite, just many people doing things that
build on each other, like a wall of mini stones.”

—Donald Knuth

3 Functions
You’ve seen function values, such as alert, and how to call them. Functions
are the bread and butter of JavaScript programming. The concept of wrapping
a piece of program in a value has many uses. It is a tool to structure larger
programs, to reduce repetition, to associate names with subprograms, and to
isolate these subprograms from each other.

The most obvious application of functions is defining new vocabulary. Cre-
ating new words in regular, human-language prose is usually bad style. But in
programming, it is indispensable.

Typical adult English speakers have some 20,000 words in their vocabulary.
Few programming languages come with 20,000 commands built in. And the
vocabulary that is available tends to be more precisely defined, and thus less
flexible, than in human language. Therefore, we usually have to add some of
our own vocabulary to avoid repeating ourselves too much.

Defining a function
A function definition is just a regular variable definition where the value given
to the variable happens to be a function. For example, the following code
defines the variable square to refer to a function that produces the square of a
given number:

var square = function(x) {

return x * x;

};

console.log(square (12));

// → 144

A function is created by an expression that starts with the keyword function.
Functions have a set of parameters (in this case, only x) and a body, which
contains the statements that are to be executed when the function is called.
The function body must always be wrapped in braces, even when it consists of
only a single statement (as in the previous example).

38

A function can have multiple parameters or no parameters at all. In the
following example, makeNoise does not list any parameter names, whereas power

lists two:

var makeNoise = function () {

console.log("Pling !");

};

makeNoise ();

// → Pling!

var power = function(base , exponent) {

var result = 1;

for (var count = 0; count < exponent; count ++)

result *= base;

return result;

};

console.log(power(2, 10));

// → 1024

Some functions produce a value, such as power and square, and some don’t, such
as makeNoise, which produces only a side effect. A return statement determines
the value the function returns. When control comes across such a statement,
it immediately jumps out of the current function and gives the returned value
to the code that called the function. The return keyword without an expression
after it will cause the function to return undefined.

Parameters and scopes
The parameters to a function behave like regular variables, but their initial
values are given by the caller of the function, not the code in the function
itself.

An important property of functions is that the variables created inside of
them, including their parameters, are local to the function. This means, for
example, that the result variable in the power example will be newly created ev-
ery time the function is called, and these separate incarnations do not interfere
with each other.

This “localness” of variables applies only to the parameters and to variables
declared with the var keyword inside the function body. Variables declared
outside of any function are called global, because they are visible throughout
the program. It is possible to access such variables from inside a function, as

39

long as you haven’t declared a local variable with the same name.
The following code demonstrates this. It defines and calls two functions that

both assign a value to the variable x. The first one declares the variable as
local and thus changes only the local variable. The second does not declare x

locally, so references to x inside of it refer to the global variable x defined at
the top of the example.

var x = "outside ";

var f1 = function () {

var x = "inside f1";

};

f1();

console.log(x);

// → outside

var f2 = function () {

x = "inside f2";

};

f2();

console.log(x);

// → inside f2

This behavior helps prevent accidental interference between functions. If all
variables were shared by the whole program, it’d take a lot of effort to make
sure no name is ever used for two different purposes. And if you did reuse a
variable name, you might see strange effects from unrelated code messing with
the value of your variable. By treating function-local variables as existing only
within the function, the language makes it possible to read and understand
functions as small universes, without having to worry about all the code at
once.

Nested scope
JavaScript distinguishes not just between global and local variables. Functions
can be created inside other functions, producing several degrees of locality.

For example, this rather nonsensical function has two functions inside of it:

var landscape = function () {

var result = "";

var flat = function(size) {

for (var count = 0; count < size; count ++)

result += "_";

40

};

var mountain = function(size) {

result += "/";

for (var count = 0; count < size; count ++)

result += " '";

result += "\\";

};

flat (3);

mountain (4);

flat (6);

mountain (1);

flat (1);

return result;

};

console.log(landscape ());

// → ___ / ' ' ' '\ ______ / '_

The flat and mountain functions can “see” the variable called result, since they
are inside the function that defines it. But they cannot see each other’s count

variables since they are outside each other’s scope. The environment outside of
the landscape function doesn’t see any of the variables defined inside landscape.

In short, each local scope can also see all the local scopes that contain it.
The set of variables visible inside a function is determined by the place of that
function in the program text. All variables from blocks around a function’s
definition are visible—meaning both those in function bodies that enclose it
and those at the top level of the program. This approach to variable visibility
is called lexical scoping.

People who have experience with other programming languages might expect
that any block of code between braces produces a new local environment. But
in JavaScript, functions are the only things that create a new scope. You are
allowed to use free-standing blocks.

var something = 1;

{

var something = 2;

// Do stuff with variable something ...

}

// Outside of the block again ...

But the something inside the block refers to the same variable as the one outside
the block. In fact, although blocks like this are allowed, they are useful only to
group the body of an if statement or a loop.

41

If you find this odd, you’re not alone. The next version of JavaScript will
introduce a let keyword, which works like var but creates a variable that is local
to the enclosing block, not the enclosing function.

Functions as values
Function variables usually simply act as names for a specific piece of the pro-
gram. Such a variable is defined once and never changed. This makes it easy
to start confusing the function and its name.

But the two are different. A function value can do all the things that other
values can do—you can use it in arbitrary expressions, not just call it. It is
possible to store a function value in a new place, pass it as an argument to a
function, and so on. Similarly, a variable that holds a function is still just a
regular variable and can be assigned a new value, like so:

var launchMissiles = function(value) {

missileSystem.launch ("now");

};

if (safeMode)

launchMissiles = function(value) {/* do nothing */};

In Chapter 5, we will discuss the wonderful things that can be done by passing
around function values to other functions.

Declaration notation
There is a slightly shorter way to say “var square = ...function”. The function

keyword can also be used at the start of a statement, as in the following:

function square(x) {

return x * x;

}

This is a function declaration. The statement defines the variable square and
points it at the given function. So far so good. There is one subtlety with this
form of function definition, however.

console.log("The future says:", future ());

function future () {

return "We STILL have no flying cars .";

}

42

This code works, even though the function is defined below the code that uses
it. This is because function declarations are not part of the regular top-to-
bottom flow of control. They are conceptually moved to the top of their scope
and can be used by all the code in that scope. This is sometimes useful because
it gives us the freedom to order code in a way that seems meaningful, without
worrying about having to define all functions above their first use.

What happens when you put such a function definition inside a conditional
(if) block or a loop? Well, don’t do that. Different JavaScript platforms in
different browsers have traditionally done different things in that situation, and
the latest standard actually forbids it. If you want your programs to behave
consistently, only use this form of function-defining statements in the outermost
block of a function or program.

function example () {

function a() {} // Okay

if (something) {

function b() {} // Danger!

}

}

The call stack
It will be helpful to take a closer look at the way control flows through functions.
Here is a simple program that makes a few function calls:

function greet(who) {

console.log("Hello " + who);

}

greet("Harry");

console.log("Bye");

A run through this program goes roughly like this: the call to greet causes
control to jump to the start of that function (line 2). It calls console.log (a
built-in browser function), which takes control, does its job, and then returns
control to line 2. Then it reaches the end of the greet function, so it returns to
the place that called it, at line 4. The line after that calls console.log again.

We could show the flow of control schematically like this:

top

greet

console.log

greet

43

top

console.log

top

Because a function has to jump back to the place of the call when it returns,
the computer must remember the context from which the function was called.
In one case, console.log has to jump back to the greet function. In the other
case, it jumps back to the end of the program.

The place where the computer stores this context is the call stack. Every
time a function is called, the current context is put on top of this “stack”. When
the function returns, it removes the top context from the stack and uses it to
continue execution.

Storing this stack requires space in the computer’s memory. When the stack
grows too big, the computer will fail with a message like “out of stack space”
or “too much recursion”. The following code illustrates this by asking the com-
puter a really hard question, which causes an infinite back-and-forth between
two functions. Rather, it would be infinite, if the computer had an infinite
stack. As it is, we will run out of space, or “blow the stack”.

function chicken () {

return egg();

}

function egg() {

return chicken ();

}

console.log(chicken () + " came first .");

// → ??

Optional Arguments
The following code is allowed and executes without any problem:

alert("Hello", "Good Evening", "How do you do?");

The function alert officially accepts only one argument. Yet when you call it
like this, it doesn’t complain. It simply ignores the other arguments and shows
you “Hello”.

JavaScript is extremely broad-minded about the number of arguments you
pass to a function. If you pass too many, the extra ones are ignored. If you
pass too few, the missing parameters simply get assigned the value undefined.

The downside of this is that it is possible—likely, even—that you’ll acciden-
tally pass the wrong number of arguments to functions and no one will tell you

44

about it.
The upside is that this behavior can be used to have a function take “op-

tional” arguments. For example, the following version of power can be called
either with two arguments or with a single argument, in which case the expo-
nent is assumed to be two, and the function behaves like square.

function power(base , exponent) {

if (exponent == undefined)

exponent = 2;

var result = 1;

for (var count = 0; count < exponent; count ++)

result *= base;

return result;

}

console.log(power (4));

// → 16

console.log(power(4, 3));

// → 64

In the next chapter, we will see a way in which a function body can get at
the exact list of arguments that were passed. This is helpful because it makes
it possible for a function to accept any number of arguments. For example,
console.log makes use of this—it outputs all of the values it is given.

console.log("R", 2, "D", 2);

// → R 2 D 2

Closure
The ability to treat functions as values, combined with the fact that local vari-
ables are “re-created” every time a function is called, brings up an interesting
question. What happens to local variables when the function call that created
them is no longer active?

The following code shows an example of this. It defines a function, wrapValue,
which creates a local variable. It then returns a function that accesses and
returns this local variable.

function wrapValue(n) {

var localVariable = n;

return function () { return localVariable; };

}

45

var wrap1 = wrapValue (1);

var wrap2 = wrapValue (2);

console.log(wrap1());

// → 1

console.log(wrap2());

// → 2

This is allowed and works as you’d hope—the variable can still be accessed. In
fact, multiple instances of the variable can be alive at the same time, which is
another good illustration of the concept that local variables really are re-created
for every call—different calls can’t trample on one another’s local variables.

This feature—being able to reference a specific instance of local variables in
an enclosing function—is called closure. A function that “closes over” some
local variables is called a closure. This behavior not only frees you from having
to worry about lifetimes of variables but also allows for some creative use of
function values.

With a slight change, we can turn the previous example into a way to create
functions that multiply by an arbitrary amount.

function multiplier(factor) {

return function(number) {

return number * factor;

};

}

var twice = multiplier (2);

console.log(twice (5));

// → 10

The explicit localVariable from the wrapValue example isn’t needed since a pa-
rameter is itself a local variable.

Thinking about programs like this takes some practice. A good mental model
is to think of the function keyword as “freezing” the code in its body and
wrapping it into a package (the function value). So when you read return

function(...){...}, think of it as returning a handle to a piece of computation,
frozen for later use.

In the example, multiplier returns a frozen chunk of code that gets stored in
the twice variable. The last line then calls the value in this variable, causing
the frozen code (return number * factor;) to be activated. It still has access to
the factor variable from the multiplier call that created it, and in addition it
gets access to the argument passed when unfreezing it, 5, through its number

parameter.

46

Recursion
It is perfectly okay for a function to call itself, as long as it takes care not to
overflow the stack. A function that calls itself is called recursive. Recursion
allows some functions to be written in a different style. Take, for example, this
alternative implementation of power:

function power(base , exponent) {

if (exponent == 0)

return 1;

else

return base * power(base , exponent - 1);

}

console.log(power(2, 3));

// → 8

This is rather close to the way mathematicians define exponentiation and ar-
guably describes the concept in a more elegant way than the looping vari-
ant does. The function calls itself multiple times with different arguments to
achieve the repeated multiplication.

But this implementation has one important problem: in typical JavaScript
implementations, it’s about 10 times slower than the looping version. Running
through a simple loop is a lot cheaper than calling a function multiple times.

The dilemma of speed versus elegance is an interesting one. You can see it as
a kind of continuum between human-friendliness and machine-friendliness. Al-
most any program can be made faster by making it bigger and more convoluted.
The programmer must decide on an appropriate balance.

In the case of the earlier power function, the inelegant (looping) version is
still fairly simple and easy to read. It doesn’t make much sense to replace it
with the recursive version. Often, though, a program deals with such complex
concepts that giving up some efficiency in order to make the program more
straightforward becomes an attractive choice.

The basic rule, which has been repeated by many programmers and with
which I wholeheartedly agree, is to not worry about efficiency until you know
for sure that the program is too slow. If it is, find out which parts are taking
up the most time, and start exchanging elegance for efficiency in those parts.

Of course, this rule doesn’t mean one should start ignoring performance
altogether. In many cases, like the power function, not much simplicity is gained
from the “elegant” approach. And sometimes an experienced programmer can
see right away that a simple approach is never going to be fast enough.

The reason I’m stressing this is that surprisingly many beginning program-

47

mers focus fanatically on efficiency, even in the smallest details. The result is
bigger, more complicated, and often less correct programs, that take longer to
write than their more straightforward equivalents and that usually run only
marginally faster.

But recursion is not always just a less-efficient alternative to looping. Some
problems are much easier to solve with recursion than with loops. Most often
these are problems that require exploring or processing several “branches”, each
of which might branch out again into more branches.

Consider this puzzle: by starting from the number 1 and repeatedly either
adding 5 or multiplying by 3, an infinite amount of new numbers can be pro-
duced. How would you write a function that, given a number, tries to find a
sequence of such additions and multiplications that produce that number? For
example, the number 13 could be reached by first multiplying by 3 and then
adding 5 twice, whereas the number 15 cannot be reached at all.

Here is a recursive solution:

function findSolution(target) {

function find(current , history) {

if (current == target)

return history;

else if (current > target)

return null;

else

return find(current + 5, "(" + history + " + 5)") ||

find(current * 3, "(" + history + " * 3)");

}

return find(1, "1");

}

console.log(findSolution (24));

// → (((1 * 3) + 5) * 3)

Note that this program doesn’t necessarily find the shortest sequence of oper-
ations. It is satisfied when it finds any sequence at all.

I don’t necessarily expect you to see how it works right away. But let’s work
through it, since it makes for a great exercise in recursive thinking.

The inner function find does the actual recursing. It takes two arguments—
the current number and a string that records how we reached this number—and
returns either a string that shows how to get to the target or null.

To do this, the function performs one of three actions. If the current number
is the target number, the current history is a way to reach that target, so it
is simply returned. If the current number is greater than the target, there’s

48

no sense in further exploring this history since both adding and multiplying
will only make the number bigger. And finally, if we’re still below the target,
the function tries both possible paths that start from the current number, by
calling itself twice, once for each of the allowed next steps. If the first call
returns something that is not null, it is returned. Otherwise, the second call is
returned—regardless of whether it produces a string or null.

To better understand how this function produces the effect we’re looking for,
let’s look at all the calls to find that are made when searching for a solution
for the number 13.

find(1, "1")

find(6, "(1 + 5)")

find(11, "((1 + 5) + 5)")

find(16, "(((1 + 5) + 5) + 5)")

too big

find(33, "(((1 + 5) + 5) * 3)")

too big

find(18, "((1 + 5) * 3)")

too big

find(3, "(1 * 3)")

find(8, "((1 * 3) + 5)")

find(13, "(((1 * 3) + 5) + 5)")

found!

The indentation suggests the depth of the call stack. The first time find is
called it calls itself twice to explore the solutions that start with (1 + 5) and
(1 * 3). The first call tries to find a solution that starts with (1 + 5) and, using
recursion, explores every solution that yields a number less than or equal to
the target number. Since it doesn’t find a solution that hits the target, it
returns null back to the first call. There the || operator causes the call that
explores (1 * 3) to happen. This search has more luck because its first recursive
call, through yet another recursive call, hits upon the target number, 13. This
innermost recursive call returns a string, and each of the || operators in the
intermediate calls pass that string along, ultimately returning our solution.

Growing functions
There are two more or less natural ways for functions to be introduced into
programs.

The first is that you find yourself writing very similar code multiple times.
We want to avoid doing that since having more code means more space for
mistakes to hide and more material to read for people trying to understand the

49

program. So we take the repeated functionality, find a good name for it, and
put it into a function.

The second way is that you find you need some functionality that you haven’t
written yet and that sounds like it deserves its own function. You’ll start by
naming the function, and you’ll then write its body. You might even start
writing code that uses the function before you actually define the function
itself.

How difficult it is to find a good name for a function is a good indication
of how clear a concept it is that you’re trying to wrap. Let’s go through an
example.

We want to write a program that prints two numbers, the numbers of cows
and chickens on a farm, with the words Cows and Chickens after them, and zeros
padded before both numbers so that they are always three digits long.

007 Cows

011 Chickens

That clearly asks for a function of two arguments. Let’s get coding.

function printFarmInventory(cows , chickens) {

var cowString = String(cows);

while (cowString.length < 3)

cowString = "0" + cowString;

console.log(cowString + " Cows");

var chickenString = String(chickens);

while (chickenString.length < 3)

chickenString = "0" + chickenString;

console.log(chickenString + " Chickens ");

}

printFarmInventory (7, 11);

Adding .length after a string value will give us the length of that string. Thus,
the while loops keep adding zeros in front of the number strings until they are
at least three characters long.

Mission accomplished! But just as we are about to send the farmer the code
(along with a hefty invoice, of course), he calls and tells us he’s also started
keeping pigs, and couldn’t we please extend the software to also print pigs?

We sure can. But just as we’re in the process of copying and pasting those
four lines one more time, we stop and reconsider. There has to be a better way.
Here’s a first attempt:

function printZeroPaddedWithLabel(number , label) {

var numberString = String(number);

while (numberString.length < 3)

50

numberString = "0" + numberString;

console.log(numberString + " " + label);

}

function printFarmInventory(cows , chickens , pigs) {

printZeroPaddedWithLabel(cows , "Cows");

printZeroPaddedWithLabel(chickens , "Chickens ");

printZeroPaddedWithLabel(pigs , "Pigs");

}

printFarmInventory (7, 11, 3);

It works! But that name, printZeroPaddedWithLabel, is a little awkward. It con-
flates three things—printing, zero-padding, and adding a label—into a single
function.

Instead of lifting out the repeated part of our program wholesale, let’s try
to pick out a single concept.

function zeroPad(number , width) {

var string = String(number);

while (string.length < width)

string = "0" + string;

return string;

}

function printFarmInventory(cows , chickens , pigs) {

console.log(zeroPad(cows , 3) + " Cows");

console.log(zeroPad(chickens , 3) + " Chickens ");

console.log(zeroPad(pigs , 3) + " Pigs");

}

printFarmInventory (7, 16, 3);

A function with a nice, obvious name like zeroPad makes it easier for someone
who reads the code to figure out what it does. And it is useful in more situations
than just this specific program. For example, you could use it to help print
nicely aligned tables of numbers.

How smart and versatile should our function be? We could write anything
from a terribly simple function that simply pads a number so that it’s three
characters wide to a complicated generalized number-formatting system that
handles fractional numbers, negative numbers, alignment of dots, padding with
different characters, and so on.

A useful principle is not to add cleverness unless you are absolutely sure
you’re going to need it. It can be tempting to write general “frameworks” for

51

every little bit of functionality you come across. Resist that urge. You won’t
get any real work done, and you’ll end up writing a lot of code that no one will
ever use.

Functions and side effects
Functions can be roughly divided into those that are called for their side effects
and those that are called for their return value. (Though it is definitely also
possible to have both side effects and return a value.)

The first helper function in the farm example, printZeroPaddedWithLabel, is
called for its side effect: it prints a line. The second version, zeroPad, is called
for its return value. It is no coincidence that the second is useful in more
situations than the first. Functions that create values are easier to combine in
new ways than functions that directly perform side effects.

A pure function is a specific kind of value-producing function that not only
has no side effects but also doesn’t rely on side effects from other code—for
example, it doesn’t read global variables that are occasionally changed by other
code. A pure function has the pleasant property that, when called with the
same arguments, it always produces the same value (and doesn’t do anything
else). This makes it easy to reason about. A call to such a function can be
mentally substituted by its result, without changing the meaning of the code.
When you are not sure that a pure function is working correctly, you can test
it by simply calling it, and know that if it works in that context, it will work in
any context. Nonpure functions might return different values based on all kinds
of factors and have side effects that might be hard to test and think about.

Still, there’s no need to feel bad when writing functions that are not pure
or to wage a holy war to purge them from your code. Side effects are often
useful. There’d be no way to write a pure version of console.log, for example,
and console.log is certainly useful. Some operations are also easier to express in
an efficient way when we use side effects, so computing speed can be a reason
to avoid purity.

Summary
This chapter taught you how to write your own functions. The function key-
word, when used as an expression, can create a function value. When used as
a statement, it can be used to declare a variable and give it a function as its
value.

52

// Create a function value f

var f = function(a) {

console.log(a + 2);

};

// Declare g to be a function

function g(a, b) {

return a * b * 3.5;

}

A key aspect in understanding functions is understanding local scopes. Pa-
rameters and variables declared inside a function are local to the function,
re-created every time the function is called, and not visible from the outside.
Functions declared inside another function have access to the outer function’s
local scope.

Separating the tasks your program performs into different functions is help-
ful. You won’t have to repeat yourself as much, and functions can make a
program more readable by grouping code into conceptual chunks, in the same
way that chapters and sections help organize regular text.

Exercises
Minimum
The previous chapter introduced the standard function Math.min that returns its
smallest argument. We can do that ourselves now. Write a function min that
takes two arguments and returns their minimum.

Recursion
We’ve seen that % (the remainder operator) can be used to test whether a
number is even or odd by using % 2 to check whether it’s divisible by two.
Here’s another way to define whether a positive whole number is even or odd:

• Zero is even.

• One is odd.

• For any other number N, its evenness is the same as N - 2.

Define a recursive function isEven corresponding to this description. The func-
tion should accept a number parameter and return a Boolean.

53

Test it on 50 and 75. See how it behaves on -1. Why? Can you think of a
way to fix this?

Bean counting
You can get the Nth character, or letter, from a string by writing "string".

charAt(N), similar to how you get its length with "s".length. The returned value
will be a string containing only one character (for example, "b"). The first
character has position zero, which causes the last one to be found at position
string.length - 1. In other words, a two-character string has length 2, and its
characters have positions 0 and 1.

Write a function countBs that takes a string as its only argument and returns
a number that indicates how many uppercase “B” characters are in the string.

Next, write a function called countChar that behaves like countBs, except it
takes a second argument that indicates the character that is to be counted
(rather than counting only uppercase “B” characters). Rewrite countBs to make
use of this new function.

54

“On two occasions I have been asked, ‘Pray, Mr. Babbage, if you put
into the machine wrong figures, will the right answers come out?’
[…] I am not able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.”
—Charles Babbage, Passages from the Life of a Philosopher (1864)

4 Data Structures: Objects and
Arrays

Numbers, Booleans, and strings are the bricks that data structures are built
from. But you can’t make much of a house out of a single brick. Objects allow
us to group values—including other objects—together and thus build more
complex structures.

The programs we have built so far have been seriously hampered by the fact
that they were operating only on simple data types. This chapter will add a
basic understanding of data structures to your toolkit. By the end of it, you’ll
know enough to start writing some useful programs.

The chapter will work through a more or less realistic programming example,
introducing concepts as they apply to the problem at hand. The example code
will often build on functions and variables that were introduced earlier in the
text.

The online coding sandbox for the book (eloquentjavascript.net/code) pro-
vides a way to run code in the context of a specific chapter. If you decide to
work through the examples in another environment, be sure to first download
the full code for this chapter from the sandbox page.

The weresquirrel
Every now and then, usually between eight and ten in the evening, Jacques
finds himself transforming into a small furry rodent with a bushy tail.

On one hand, Jacques is quite glad that he doesn’t have classic lycanthropy.
Turning into a squirrel tends to cause fewer problems than turning into a wolf.
Instead of having to worry about accidentally eating the neighbor (that would
be awkward), he worries about being eaten by the neighbor’s cat. After two
occasions where he woke up on a precariously thin branch in the crown of an
oak, naked and disoriented, he has taken to locking the doors and windows of
his room at night and putting a few walnuts on the floor to keep himself busy.

55

http://eloquentjavascript.net/2nd_{}edition/code

That takes care of the cat and oak problems. But Jacques still suffers from his
condition. The irregular occurrences of the transformation make him suspect
that they might be triggered by something. For a while, he believed that it
happened only on days when he had touched trees. So he stopped touching
trees entirely and even avoided going near them. But the problem persisted.

Switching to a more scientific approach, Jacques intends to start keeping a
daily log of everything he did that day and whether he changed form. With this
data he hopes to narrow down the conditions that trigger the transformations.

The first thing he does is design a data structure to store this information.

Data sets
To work with a chunk of digital data, we’ll first have to find a way to represent it
in our machine’s memory. Say, as a simple example, that we want to represent
a collection of numbers: 2, 3, 5, 7, and 11.

We could get creative with strings—after all, strings can be any length, so
we can put a lot of data into them—and use "2 3 5 7 11" as our representation.
But this is awkward. You’d have to somehow extract the digits and convert
them back to numbers to access them.

Fortunately, JavaScript provides a data type specifically for storing sequences
of values. It is called an array and is written as a list of values between square
brackets, separated by commas.

var listOfNumbers = [2, 3, 5, 7, 11];

console.log(listOfNumbers [2]);

// → 5

console.log(listOfNumbers [2 - 1]);

// → 3

56

The notation for getting at the elements inside an array also uses square brack-
ets. A pair of square brackets immediately after an expression, with another
expression inside of them, will look up the element in the left-hand expression
that corresponds to the index given by the expression in the brackets.

The first index of an array is zero, not one. So the first element can be
read with listOfNumbers[0]. If you don’t have a programming background, this
convention might take some getting used to. But zero-based counting has a long
tradition in technology, and as long as this convention is followed consistently
(which it is, in JavaScript), it works well.

Properties
We’ve seen a few suspicious-looking expressions like myString.length (to get the
length of a string) and Math.max (the maximum function) in past examples.
These are expressions that access a property of some value. In the first case, we
access the length property of the value in myString. In the second, we access the
property named max in the Math object (which is a collection of mathematics-
related values and functions).

Almost all JavaScript values have properties. The exceptions are null and
undefined. If you try to access a property on one of these nonvalues, you get an
error.

null.length;

// → TypeError: Cannot read property ' length ' of null

The two most common ways to access properties in JavaScript are with a dot
and with square brackets. Both value.x and value[x] access a property on value—
but not necessarily the same property. The difference is in how x is interpreted.
When using a dot, the part after the dot must be a valid variable name, and
it directly names the property. When using square brackets, the expression
between the brackets is evaluated to get the property name. Whereas value.x

fetches the property of value named “x”, value[x] tries to evaluate the expression
x and uses the result as the property name.

So if you know that the property you are interested in is called “length”, you
say value.length. If you want to extract the property named by the value held
in the variable i, you say value[i]. And because property names can be any
string, if you want to access a property named “2” or “John Doe”, you must
use square brackets: value[2] or value["John Doe"]. This is the case even though
you know the precise name of the property in advance, because neither “2” nor
“John Doe” is a valid variable name and so cannot be accessed through dot

57

notation.
The elements in an array are stored in properties. Because the names of these

properties are numbers and we often need to get their name from a variable, we
have to use the bracket syntax to access them. The length property of an array
tells us how many elements it contains. This property name is a valid variable
name, and we know its name in advance, so to find the length of an array, you
typically write array.length because that is easier to write than array["length"].

Methods
Both string and array objects contain, in addition to the length property, a
number of properties that refer to function values.

var doh = "Doh";

console.log(typeof doh.toUpperCase);

// → function

console.log(doh.toUpperCase ());

// → DOH

Every string has a toUpperCase property. When called, it will return a copy of
the string, in which all letters have been converted to uppercase. There is also
toLowerCase. You can guess what that does.

Interestingly, even though the call to toUpperCase does not pass any arguments,
the function somehow has access to the string "Doh", the value whose property
we called. How this works is described in Chapter 6.

Properties that contain functions are generally called methods of the value
they belong to. As in, “toUpperCase is a method of a string”.

This example demonstrates some methods that array objects have:

var mack = [];

mack.push("Mack");

mack.push("the", "Knife");

console.log(mack);

// → ["Mack", "the", "Knife "]

console.log(mack.join(" "));

// → Mack the Knife

console.log(mack.pop());

// → Knife

console.log(mack);

// → ["Mack", "the"]

The push method can be used to add values to the end of an array. The pop

method does the opposite: it removes the value at the end of the array and

58

returns it. An array of strings can be flattened to a single string with the join

method. The argument given to join determines the text that is glued between
the array’s elements.

Objects
Back to the weresquirrel. A set of daily log entries can be represented as an
array. But the entries do not consist of just a number or a string—each entry
needs to store a list of activities and a Boolean value that indicates whether
Jacques turned into a squirrel. Ideally, we would like to group these values
together into a single value and then put these grouped values into an array of
log entries.

Values of the type object are arbitrary collections of properties, and we can
add or remove these properties as we please. One way to create an object is by
using a curly brace notation.

var day1 = {

squirrel: false ,

events: ["work", "touched tree", "pizza", "running",

"television "]

};

console.log(day1.squirrel);

// → false

console.log(day1.wolf);

// → undefined

day1.wolf = false;

console.log(day1.wolf);

// → false

Inside the curly braces, we can give a list of properties separated by commas.
Each property is written as a name, followed by a colon, followed by an ex-
pression that provides a value for the property. Spaces and line breaks are
not significant. When an object spans multiple lines, indenting it like in the
previous example improves readability. Properties whose names are not valid
variable names or valid numbers have to be quoted.

var descriptions = {

work: "Went to work",

"touched tree": "Touched a tree"

};

This means that curly braces have two meanings in JavaScript. At the start of a
statement, they start a block of statements. In any other position, they describe

59

an object. Fortunately, it is almost never useful to start a statement with a
curly-brace object, and in typical programs, there is no ambiguity between
these two uses.

Reading a property that doesn’t exist will produce the value undefined, which
happens the first time we try to read the wolf property in the previous example.

It is possible to assign a value to a property expression with the = operator.
This will replace the property’s value if it already existed or create a new
property on the object if it didn’t.

To briefly return to our tentacle model of variable bindings—property bind-
ings are similar. They grasp values, but other variables and properties might
be holding onto those same values. You may think of objects as octopuses with
any number of tentacles, each of which has a name inscribed on it.

The delete operator cuts off a tentacle from such an octopus. It is a unary
operator that, when applied to a property access expression, will remove the
named property from the object. This is not a common thing to do, but it is
possible.

var anObject = {left: 1, right: 2};

console.log(anObject.left);

// → 1

delete anObject.left;

console.log(anObject.left);

// → undefined

console.log("left" in anObject);

// → false

console.log("right" in anObject);

// → true

60

The binary in operator, when applied to a string and an object, returns a
Boolean value that indicates whether that object has that property. The dif-
ference between setting a property to undefined and actually deleting it is that,
in the first case, the object still has the property (it just doesn’t have a very
interesting value), whereas in the second case the property is no longer present
and in will return false.

Arrays, then, are just a kind of object specialized for storing sequences of
things. If you evaluate typeof [1, 2], this produces "object". You can see them
as long, flat octopuses with all their arms in a neat row, labeled with numbers.

So we can represent Jacques’ journal as an array of objects.

var journal = [

{events: ["work", "touched tree", "pizza",

"running", "television "],

squirrel: false},

{events: ["work", "ice cream", "cauliflower",

"lasagna", "touched tree", "brushed teeth"],

squirrel: false},

{events: [" weekend", "cycling", "break",

"peanuts", "beer"],

squirrel: true},

/* and so on... */

];

61

Mutability
We will get to actual programming real soon now. But first, there’s one last
piece of theory to understand.

We’ve seen that object values can be modified. The types of values discussed
in earlier chapters, such as numbers, strings, and Booleans, are all immutable—
it is impossible to change an existing value of those types. You can combine
them and derive new values from them, but when you take a specific string
value, that value will always remain the same. The text inside it cannot be
changed. If you have reference to a string that contains "cat", it is not possible
for other code to change a character in that string to make it spell "rat".

With objects, on the other hand, the content of a value can be modified by
changing its properties.

When we have two numbers, 120 and 120, we can consider them precisely the
same number, whether or not they refer to the same physical bits. But with
objects, there is a difference between having two references to the same object
and having two different objects that contain the same properties. Consider
the following code:

var object1 = {value: 10};

var object2 = object1;

var object3 = {value: 10};

console.log(object1 == object2);

// → true

console.log(object1 == object3);

// → false

object1.value = 15;

console.log(object2.value);

// → 15

console.log(object3.value);

// → 10

The object1 and object2 variables grasp the same object, which is why changing
object1 also changes the value of object2. The variable object3 points to a dif-
ferent object, which initially contains the same properties as object1 but lives a
separate life.

JavaScript’s == operator, when comparing objects, will return true only if
both objects are precisely the same value. Comparing different objects will
return false, even if they have identical contents. There is no “deep” compari-
son operation built into JavaScript, which looks at object’s contents, but it is

62

possible to write it yourself (which will be one of the exercises at the end of
this chapter).

The lycanthrope’s log
So Jacques starts up his JavaScript interpreter and sets up the environment he
needs to keep his journal.

var journal = [];

function addEntry(events , didITurnIntoASquirrel) {

journal.push({

events: events ,

squirrel: didITurnIntoASquirrel

});

}

And then, every evening at ten—or sometimes the next morning, after climbing
down from the top shelf of his bookcase—he records the day.

addEntry ([" work", "touched tree", "pizza", "running",

"television "], false);

addEntry ([" work", "ice cream", "cauliflower", "lasagna",

"touched tree", "brushed teeth"], false);

addEntry ([" weekend", "cycling", "break", "peanuts",

"beer"], true);

Once he has enough data points, he intends to compute the correlation between
his squirrelification and each of the day’s events and ideally learn something
useful from those correlations.

Correlation is a measure of dependence between variables (“variables” in
the statistical sense, not the JavaScript sense). It is usually expressed as a
coefficient that ranges from -1 to 1. Zero correlation means the variables are
not related, whereas a correlation of one indicates that the two are perfectly
related—if you know one, you also know the other. Negative one also means
that the variables are perfectly related but that they are opposites—when one
is true, the other is false.

For binary (Boolean) variables, the phi coefficient (φ) provides a good mea-
sure of correlation and is relatively easy to compute. To compute φ, we need a
table n that contains the number of times the various combinations of the two
variables were observed. For example, we could take the event of eating pizza
and put that in a table like this:

63

No squirrel, no pizza76

Squirrel, no pizza 4

No squirrel, pizza 9

Squirrel, pizza 1

φ can be computed using the following formula, where n refers to the table:

φ =
n11n00 − n10n01√

n1•n0•n•1n•0
(4.1)

The notation n01 indicates the number of measurements where the first vari-
able (squirrelness) is false (0) and the second variable (pizza) is true (1). In
this example, n01 is 9.

The value n1• refers to the sum of all measurements where the first variable
is true, which is 5 in the example table. Likewise, n•0 refers to the sum of the
measurements where the second variable is false.

So for the pizza table, the part above the division line (the dividend) would
be 1×76 - 4×9 = 40, and the part below it (the divisor) would be the square
root of 5×85×10×80, or

√
340000. This comes out to φ ≈ 0.069, which is tiny.

Eating pizza does not appear to have influence on the transformations.

Computing correlation
We can represent a two-by-two table in JavaScript with a four-element array
([76, 9, 4, 1]). We could also use other representations, such as an array con-
taining two two-element arrays ([[76, 9], [4, 1]]) or an object with property
names like "11" and "01", but the flat array is simple and makes the expressions
that access the table pleasantly short. We’ll interpret the indices to the array
as two-bit binary number, where the leftmost (most significant) digit refers
to the squirrel variable and the rightmost (least significant) digit refers to the
event variable. For example, the binary number 10 refers to the case where
Jacques did turn into a squirrel, but the event (say, "pizza") didn’t occur. This

64

happened four times. And since binary 10 is 2 in decimal notation, we will store
this number at index 2 of the array.

This is the function that computes the φ coefficient from such an array:

function phi(table) {

return (table [3] * table [0] - table [2] * table [1]) /

Math.sqrt((table [2] + table [3]) *

(table [0] + table [1]) *

(table [1] + table [3]) *

(table [0] + table [2]));

}

console.log(phi([76, 9, 4, 1]));

// → 0.068599434

This is simply a direct translation of the φ formula into JavaScript. Math.

sqrt is the square root function, as provided by the Math object in a standard
JavaScript environment. We have to sum two fields from the table to get fields
like n1• because the sums of rows or columns are not stored directly in our data
structure.

Jacques kept his journal for three months. The resulting data set is available
in the coding sandbox for this chapter(eloquentjavascript.net/2nd_edition/code#4),
where it is stored in the JOURNAL variable, and in a downloadable file.

To extract a two-by-two table for a specific event from this journal, we must
loop over all the entries and tally up how many times the event occurs in
relation to squirrel transformations.

function hasEvent(event , entry) {

return entry.events.indexOf(event) != -1;

}

function tableFor(event , journal) {

var table = [0, 0, 0, 0];

for (var i = 0; i < journal.length; i++) {

var entry = journal[i], index = 0;

if (hasEvent(event , entry)) index += 1;

if (entry.squirrel) index += 2;

table[index] += 1;

}

return table;

}

console.log(tableFor ("pizza", JOURNAL));

// → [76, 9, 4, 1]

65

http://eloquentjavascript.net/2nd_{}edition/code#{}4
http://eloquentjavascript.net/2nd_{}edition/code/jacques_{}journal.js

The hasEvent function tests whether an entry contains a given event. Arrays
have an indexOf method that tries to find a given value (in this case, the event
name) in the array and returns the index at which it was found or -1 if it wasn’t
found. So if the call to indexOf doesn’t return -1, then we know the event was
found in the entry.

The body of the loop in tableFor figures out which box in the table each
journal entry falls into by checking whether the entry contains the specific
event it’s interested in and whether the event happens alongside a squirrel
incident. The loop then adds one to the number in the array that corresponds
to this box on the table.

We now have the tools we need to compute individual correlations. The
only step remaining is to find a correlation for every type of event that was
recorded and see whether anything stands out. But how should we store these
correlations once we compute them?

Objects as maps
One possible way is to store all the correlations in an array, using objects with
name and value properties. But that makes looking up the correlation for a
given event somewhat cumbersome: you’d have to loop over the whole array
to find the object with the right name. We could wrap this lookup process in a
function, but we would still be writing more code, and the computer would be
doing more work than necessary.

A better way is to use object properties named after the event types. We
can use the square bracket access notation to create and read the properties
and can use the in operator to test whether a given property exists.

var map = {};

function storePhi(event , phi) {

map[event] = phi;

}

storePhi ("pizza", 0.069);

storePhi (" touched tree", -0.081);

console.log("pizza" in map);

// → true

console.log(map[" touched tree "]);

// → -0.081

A map is a way to go from values in one domain (in this case, event names) to
corresponding values in another domain (in this case, φ coefficients).

66

There are a few potential problems with using objects like this, which we
will discuss in Chapter 6, but for the time being, we won’t worry about those.

What if we want to find all the events for which we have stored a coefficient?
The properties don’t form a predictable series, like they would in an array, so we
cannot use a normal for loop. JavaScript provides a loop construct specifically
for going over the properties of an object. It looks a little like a normal for

loop but distinguishes itself by the use of the word in.

for (var event in map)

console.log("The correlation for '" + event +

" ' is " + map[event]);

// → The correlation for ' pizza ' is 0.069

// → The correlation for ' touched tree ' is -0.081

The final analysis
To find all the types of events that are present in the data set, we simply process
each entry in turn and then loop over the events in that entry. We keep an
object phis that has correlation coefficients for all the event types we have seen
so far. Whenever we run across a type that isn’t in the phis object yet, we
compute its correlation and add it to the object.

function gatherCorrelations(journal) {

var phis = {};

for (var entry = 0; entry < journal.length; entry ++) {

var events = journal[entry]. events;

for (var i = 0; i < events.length; i++) {

var event = events[i];

if (!(event in phis))

phis[event] = phi(tableFor(event , journal));

}

}

return phis;

}

var correlations = gatherCorrelations(JOURNAL);

console.log(correlations.pizza);

// → 0.068599434

Let’s see what came out.

for (var event in correlations)

console.log(event + ": " + correlations[event]);

67

// → carrot: 0.0140970969

// → exercise: 0.0685994341

// → weekend: 0.1371988681

// → bread: -0.0757554019

// → pudding: -0.0648203724

// and so on...

Most correlations seem to lie close to zero. Eating carrots, bread, or pudding
apparently does not trigger squirrel-lycanthropy. It does seem to occur some-
what more often on weekends, however. Let’s filter the results to show only
correlations greater than 0.1 or less than -0.1.

for (var event in correlations) {

var correlation = correlations[event];

if (correlation > 0.1 || correlation < -0.1)

console.log(event + ": " + correlation);

}

// → weekend: 0.1371988681

// → brushed teeth: -0.3805211953

// → candy: 0.1296407447

// → work: -0.1371988681

// → spaghetti: 0.2425356250

// → reading: 0.1106828054

// → peanuts: 0.5902679812

A-ha! There are two factors whose correlation is clearly stronger than the
others. Eating peanuts has a strong positive effect on the chance of turning
into a squirrel, whereas brushing his teeth has a significant negative effect.

Interesting. Let’s try something.

for (var i = 0; i < JOURNAL.length; i++) {

var entry = JOURNAL[i];

if (hasEvent (" peanuts", entry) &&

!hasEvent (" brushed teeth", entry))

entry.events.push(" peanut teeth");

}

console.log(phi(tableFor (" peanut teeth", JOURNAL)));

// → 1

Well, that’s unmistakable! The phenomenon occurs precisely when Jacques
eats peanuts and fails to brush his teeth. If only he weren’t such a slob about
dental hygiene, he’d have never even noticed his affliction.

Knowing this, Jacques simply stops eating peanuts altogether and finds that
this completely puts an end to his transformations.

All is well with Jacques for a while. But a few years later, he loses his job

68

and is eventually forced to take employment with a circus, where he performs
as The Incredible Squirrelman by stuffing his mouth with peanut butter before
every show. One day, fed up with this pitiful existence, Jacques fails to change
back into his human form, hops through a crack in the circus tent, and vanishes
into the forest. He is never seen again.

Further arrayology
Before finishing up this chapter, I want to introduce you to a few more object-
related concepts. We’ll start by introducing some generally useful array meth-
ods.

We saw push and pop, which add and remove elements at the end of an array,
earlier in this chapter. The corresponding methods for adding and removing
things at the start of an array are called unshift and shift.

var todoList = [];

function rememberTo(task) {

todoList.push(task);

}

function whatIsNext () {

return todoList.shift();

}

function urgentlyRememberTo(task) {

todoList.unshift(task);

}

The previous program manages lists of tasks. You add tasks to the end of
the list by calling rememberTo("eat"), and when you’re ready to do something,
you call whatIsNext() to get (and remove) the front item from the list. The
urgentlyRememberTo function also adds a task but adds it to the front instead of
the back of the list.

The indexOf method has a sibling called lastIndexOf, which starts searching
for the given element at the end of the array instead of the front.

console.log([1, 2, 3, 2, 1]. indexOf (2));

// → 1

console.log([1, 2, 3, 2, 1]. lastIndexOf (2));

// → 3

Both indexOf and lastIndexOf take an optional second argument that indicates
where to start searching from.

Another fundamental method is slice, which takes a start index and an end
index and returns an array that has only the elements between those indices.

69

The start index is inclusive, the end index exclusive.

console.log([0, 1, 2, 3, 4]. slice(2, 4));

// → [2, 3]

console.log([0, 1, 2, 3, 4]. slice (2));

// → [2, 3, 4]

When the end index is not given, slice will take all of the elements after the
start index. Strings also have a slice method, which has a similar effect.

The concat method can be used to glue arrays together, similar to what the
+ operator does for strings. The following example shows both concat and slice

in action. It takes an array and an index, and it returns a new array that is a
copy of the original array with the element at the given index removed.

function remove(array , index) {

return array.slice(0, index)

.concat(array.slice(index + 1));

}

console.log(remove (["a", "b", "c", "d", "e"], 2));

// → ["a", "b", "d", "e"]

Strings and their properties
We can read properties like length and toUpperCase from string values. But if
you try to add a new property, it doesn’t stick.

var myString = "Fido";

myString.myProperty = "value ";

console.log(myString.myProperty);

// → undefined

Values of type string, number, and Boolean are not objects, and though the lan-
guage doesn’t complain if you try to set new properties on them, it doesn’t ac-
tually store those properties. The values are immutable and cannot be changed.

But these types do have some built-in properties. Every string value has
a number of methods. The most useful ones are probably slice and indexOf,
which resemble the array methods of the same name.

console.log(" coconuts ".slice(4, 7));

// → nut

console.log(" coconut ". indexOf ("u"));

// → 5

One difference is that a string’s indexOf can take a string containing more than

70

one character, whereas the corresponding array method looks only for a single
element.

console.log("one two three". indexOf ("ee"));

// → 11

The trim method removes whitespace (spaces, newlines, tabs, and similar char-
acters) from the start and end of a string.

console.log(" okay \n ".trim());

// → okay

We have already seen the string type’s length property. Accessing the individual
characters in a string can be done with the charAt method but also by simply
reading numeric properties, like you’d do for an array.

var string = "abc";

console.log(string.length);

// → 3

console.log(string.charAt (0));

// → a

console.log(string [1]);

// → b

The arguments object
Whenever a function is called, a special variable named arguments is added to
the environment in which the function body runs. This variable refers to an
object that holds all of the arguments passed to the function. Remember that
in JavaScript you are allowed to pass more (or fewer) arguments to a function
than the number of parameters the function itself declares.

function noArguments () {}

noArguments (1, 2, 3); // This is okay

function threeArguments(a, b, c) {}

threeArguments (); // And so is this

The arguments object has a length property that tells us the number of argu-
ments that were really passed to the function. It also has a property for each
argument, named 0, 1, 2, and so on.

If that sounds a lot like an array to you, you’re right, it is a lot like an array.
But this object, unfortunately, does not have any array methods (like slice or
indexOf), so it is a little harder to use than a real array.

71

function argumentCounter () {

console.log("You gave me", arguments.length , "arguments .");

}

argumentCounter ("Straw man", "Tautology", "Ad hominem ");

// → You gave me 3 arguments.

Some functions can take any number of arguments, like console.log. These
typically loop over the values in their arguments object. They can be used to
create very pleasant interfaces. For example, remember how we created the
entries to Jacques’ journal.

addEntry ([" work", "touched tree", "pizza", "running",

"television "], false);

Since he is going to be calling this function a lot, we could create an alternative
that is easier to call.

function addEntry(squirrel) {

var entry = {events: [], squirrel: squirrel };

for (var i = 1; i < arguments.length; i++)

entry.events.push(arguments[i]);

journal.push(entry);

}

addEntry(true , "work", "touched tree", "pizza",

"running", "television ");

This version reads its first argument (squirrel) in the normal way and then goes
over the rest of the arguments (the loop starts at index 1, skipping the first)
to gather them into an array.

The Math object
As we’ve seen, Math is a grab-bag of number-related utility functions, such as
Math.max (maximum), Math.min (minimum), and Math.sqrt (square root).

The Math object is used simply as a container to group a bunch of related
functionality. There is only one Math object, and it is almost never useful as a
value. Rather, it provides a namespace so that all these functions and values
do not have to be global variables.

Having too many global variables “pollutes” the namespace. The more names
that have been taken, the more likely you are to accidentally overwrite the
value of some variable. For example, it’s not unlikely that you’ll want to name
something max in one of your programs. Since JavaScript’s built-in max function
is tucked safely inside the Math object, we don’t have to worry about overwriting

72

it.
Many languages will stop you, or at least warn you, when you are defining

a variable with a name that is already taken. JavaScript does neither, so be
careful.

Back to the Math object. If you need to do trigonometry, Math can help.
It contains cos (cosine), sin (sine), and tan (tangent), as well as their inverse
functions, acos, asin, and atan, respectively. The number π (pi)—or at least the
closest approximation that fits in a JavaScript number—is available as Math.PI.
(There is an old programming tradition of writing the names of constant values
in all caps.)

function randomPointOnCircle(radius) {

var angle = Math.random () * 2 * Math.PI;

return {x: radius * Math.cos(angle),

y: radius * Math.sin(angle)};

}

console.log(randomPointOnCircle (2));

// → {x: 0.3667 , y: 1.966}

If sines and cosines are not something you are very familiar with, don’t worry.
When they are used in this book, in Chapter 13, I’ll explain them.

The previous example uses Math.random. This is a function that returns a new
pseudorandom number between zero (inclusive) and one (exclusive) every time
you call it.

console.log(Math.random ());

// → 0.36993729369714856

console.log(Math.random ());

// → 0.727367032552138

console.log(Math.random ());

// → 0.40180766698904335

Though computers are deterministic machines—they always react the same
way if given the same input—it is possible to have them produce numbers
that appear random. To do this, the machine keeps a number (or a bunch of
numbers) in its internal state. Then, every time a random number is requested,
it performs some complicated deterministic computations on this internal state
and returns part of the result of those computations. The machine also uses the
outcome to change its own internal state so that the next “random” number
produced will be different.

If we want a whole random number instead of a fractional one, we can use
Math.floor (which rounds down to the nearest whole number) on the result of
Math.random.

73

console.log(Math.floor(Math.random () * 10));

// → 2

Multiplying the random number by 10 gives us a number greater than or equal
to zero, and below 10. Since Math.floor rounds down, this expression will pro-
duce, with equal chance, any number from 0 through 9.

There are also the functions Math.ceil (for “ceiling”, which rounds up to a
whole number) and Math.round (to the nearest whole number).

The global object
The global scope, the space in which global variables live, can also be ap-
proached as an object in JavaScript. Each global variable is present as a prop-
erty of this object. In browsers, the global scope object is stored in the window

variable.

var myVar = 10;

console.log("myVar" in window);

// → true

console.log(window.myVar);

// → 10

Summary
Objects and arrays (which are a specific kind of object) provide ways to group
several values into a single value. Conceptually, this allows us to put a bunch
of related things in a bag and run around with the bag, instead of trying to
wrap our arms around all of the individual things and trying to hold on to
them separately.

Most values in JavaScript have properties, the exceptions being null and
undefined. Properties are accessed using value.propName or value["propName"]. Ob-
jects tend to use names for their properties and store more or less a fixed set
of them. Arrays, on the other hand, usually contain varying numbers of con-
ceptually identical values and use numbers (starting from 0) as the names of
their properties.

There are some named properties in arrays, such as length and a number of
methods. Methods are functions that live in properties and (usually) act on
the value they are a property of.

Objects can also serve as maps, associating values with names. The in op-
erator can be used to find out whether an object contains a property with a

74

given name. The same keyword can also be used in a for loop (for (var name in

object)) to loop over an object’s properties.

Exercises
The sum of a range
The introduction of this book alluded to the following as a nice way to compute
the sum of a range of numbers:

console.log(sum(range(1, 10)));

Write a range function that takes two arguments, start and end, and returns an
array containing all the numbers from start up to (and including) end.

Next, write a sum function that takes an array of numbers and returns the
sum of these numbers. Run the previous program and see whether it does
indeed return 55.

As a bonus assignment, modify your range function to take an optional third
argument that indicates the “step” value used to build up the array. If no
step is given, the array elements go up by increments of one, corresponding to
the old behavior. The function call range(1, 10, 2) should return [1, 3, 5, 7,

9]. Make sure it also works with negative step values so that range(5, 2, -1)

produces [5, 4, 3, 2].

Reversing an array
Arrays have a method reverse, which changes the array by inverting the order
in which its elements appear. For this exercise, write two functions, reverseArray
and reverseArrayInPlace. The first, reverseArray, takes an array as argument and
produces a new array that has the same elements in the inverse order. The
second, reverseArrayInPlace, does what the reverse method does: it modifies the
array given as argument in order to reverse its elements. Neither may use the
standard reverse method.

Thinking back to the notes about side effects and pure functions in the
previous chapter, which variant do you expect to be useful in more situations?
Which one is more efficient?

A list
Objects, as generic blobs of values, can be used to build all sorts of data struc-
tures. A common data structure is the list (not to be confused with the array).

75

A list is a nested set of objects, with the first object holding a reference to the
second, the second to the third, and so on.

var list = {

value: 1,

rest: {

value: 2,

rest: {

value: 3,

rest: null

}

}

};

The resulting objects form a chain, like this:

value: 1
rest:

value: 2
rest:

value: 3
rest: null

A nice thing about lists is that they can share parts of their structure. For
example, if I create two new values {value: 0, rest: list} and {value: -1, rest:

list} (with list referring to the variable defined earlier), they are both indepen-
dent lists, but they share the structure that makes up their last three elements.
In addition, the original list is also still a valid three-element list.

Write a function arrayToList that builds up a data structure like the previous
one when given [1, 2, 3] as argument, and write a listToArray function that
produces an array from a list. Also write the helper functions prepend, which
takes an element and a list and creates a new list that adds the element to the
front of the input list, and nth, which takes a list and a number and returns
the element at the given position in the list, or undefined when there is no such
element.

If you haven’t already, also write a recursive version of nth.

Deep comparison
The == operator compares objects by identity. But sometimes, you would prefer
to compare the values of their actual properties.

Write a function, deepEqual, that takes two values and returns true only if
they are the same value or are objects with the same properties whose values
are also equal when compared with a recursive call to deepEqual.

To find out whether to compare two things by identity (use the === operator
for that) or by looking at their properties, you can use the typeof operator. If

76

it produces "object" for both values, you should do a deep comparison. But
you have to take one silly exception into account: by a historical accident,
typeof null also produces "object".

77

“There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious
deficiencies.”

—C.A.R. Hoare, 1980 ACM Turing Award Lecture

5 Higher-Order Functions
A large program is a costly program, and not just because of the time it takes
to build. Size almost always involves complexity, and complexity confuses
programmers. Confused programmers, in turn, tend to introduce mistakes
(bugs) into programs. A large program also provides a lot of space for these
bugs to hide, making them hard to find.

Let’s briefly go back to the final two example programs in the introduction.
The first is self-contained and six lines long.

var total = 0, count = 1;

while (count <= 10) {

total += count;

count += 1;

}

console.log(total);

The second relies on two external functions and is one line long.

console.log(sum(range(1, 10)));

Which one is more likely to contain a bug?
If we count the size of the definitions of sum and range, the second program is

also big—even bigger than the first. But still, I’d argue that it is more likely
to be correct.

It is more likely to be correct because the solution is expressed in a vocabulary
that corresponds to the problem being solved. Summing a range of numbers
isn’t about loops and counters. It is about ranges and sums.

The definitions of this vocabulary (the functions sum and range) will still
involve loops, counters, and other incidental details. But because they are
expressing simpler concepts than the program as a whole, they are easier to
get right.

Abstraction
In the context of programming, these kinds of vocabularies are usually called
abstractions. Abstractions hide details and give us the ability to talk about

78

problems at a higher (or more abstract) level.
As an analogy, compare these two recipes for pea soup:

Put 1 cup of dried peas per person into a container. Add water
until the peas are well covered. Leave the peas in water for at least
12 hours. Take the peas out of the water and put them in a cooking
pan. Add 4 cups of water per person. Cover the pan and keep the
peas simmering for two hours. Take half an onion per person. Cut
it into pieces with a knife. Add it to the peas. Take a stalk of
celery per person. Cut it into pieces with a knife. Add it to the
peas. Take a carrot per person. Cut it into pieces. With a knife!
Add it to the peas. Cook for 10 more minutes.

And the second recipe:

Per person: 1 cup dried split peas, half a chopped onion, a stalk of
celery, and a carrot.
Soak peas for 12 hours. Simmer for 2 hours in 4 cups of water (per
person). Chop and add vegetables. Cook for 10 more minutes.

The second is shorter and easier to interpret. But you do need to understand
a few more cooking-related words—soak, simmer, chop, and, I guess, vegetable.

When programming, we can’t rely on all the words we need to be waiting for
us in the dictionary. Thus, you might fall into the pattern of the first recipe—
work out the precise steps the computer has to perform, one by one, blind to
the higher-level concepts that they express.

It has to become second nature, for a programmer, to notice when a concept
is begging to be abstracted into a new word.

Abstracting array traversal
Plain functions, as we’ve seen them so far, are a good way to build abstractions.
But sometimes they fall short.

In the previous chapter, this type of for loop made several appearances:

var array = [1, 2, 3];

for (var i = 0; i < array.length; i++) {

var current = array[i];

console.log(current);

}

79

It’s trying to say, “For each element in the array, log it to the console”. But
it uses a roundabout way that involves a counter variable i, a check against
the array’s length, and an extra variable declaration to pick out the current
element. Apart from being a bit of an eyesore, this provides a lot of space for
potential mistakes. We might accidentally reuse the i variable, misspell length
as lenght, confuse the i and current variables, and so on.

So let’s try to abstract this into a function. Can you think of a way?
Well, it’s easy to write a function that goes over an array and calls console.log

on every element.

function logEach(array) {

for (var i = 0; i < array.length; i++)

console.log(array[i]);

}

But what if we want to do something other than logging the elements? Since
“doing something” can be represented as a function and functions are just
values, we can pass our action as a function value.

function forEach(array , action) {

for (var i = 0; i < array.length; i++)

action(array[i]);

}

forEach ([" Wampeter", "Foma", "Granfalloon "], console.log);

// → Wampeter

// → Foma

// → Granfalloon

(In some browsers, calling console.log in this way does not work. You can use
alert instead of console.log if this example fails to work.)

Often, you don’t pass a predefined function to forEach but create a function
value on the spot instead.

var numbers = [1, 2, 3, 4, 5], sum = 0;

forEach(numbers , function(number) {

sum += number;

});

console.log(sum);

// → 15

This looks quite a lot like the classical for loop, with its body written as a block
below it. However, now the body is inside the function value, as well as inside
the parentheses of the call to forEach. This is why it has to be closed with the

80

closing brace and closing parenthesis.
Using this pattern, we can specify a variable name for the current element

(number), rather than having to pick it out of the array manually.
In fact, we don’t need to write forEach ourselves. It is available as a standard

method on arrays. Since the array is already provided as the thing the method
acts on, forEach takes only one required argument: the function to be executed
for each element.

To illustrate how helpful this is, let’s look back at a function from the previous
chapter. It contains two array-traversing loops.

function gatherCorrelations(journal) {

var phis = {};

for (var entry = 0; entry < journal.length; entry ++) {

var events = journal[entry]. events;

for (var i = 0; i < events.length; i++) {

var event = events[i];

if (!(event in phis))

phis[event] = phi(tableFor(event , journal));

}

}

return phis;

}

Working with forEach makes it slightly shorter and quite a bit cleaner.

function gatherCorrelations(journal) {

var phis = {};

journal.forEach(function(entry) {

entry.events.forEach(function(event) {

if (!(event in phis))

phis[event] = phi(tableFor(event , journal));

});

});

return phis;

}

Higher-order functions
Functions that operate on other functions, either by taking them as arguments
or by returning them, are called higher-order functions. If you have already
accepted the fact that functions are regular values, there is nothing particularly
remarkable about the fact that such functions exist. The term comes from
mathematics, where the distinction between functions and other values is taken

81

more seriously.
Higher-order functions allow us to abstract over actions, not just values.

They come in several forms. For example, you can have functions that create
new functions.

function greaterThan(n) {

return function(m) { return m > n; };

}

var greaterThan10 = greaterThan (10);

console.log(greaterThan10 (11));

// → true

And you can have functions that change other functions.

function noisy(f) {

return function(arg) {

console.log(" calling with", arg);

var val = f(arg);

console.log(" called with", arg , "- got", val);

return val;

};

}

noisy(Boolean)(0);

// → calling with 0

// → called with 0 - got false

You can even write functions that provide new types of control flow.

function unless(test , then) {

if (!test) then();

}

function repeat(times , body) {

for (var i = 0; i < times; i++) body(i);

}

repeat(3, function(n) {

unless(n % 2, function () {

console.log(n, "is even");

});

});

// → 0 is even

// → 2 is even

The lexical scoping rules that we discussed in Chapter 3 work to our advantage
when using functions in this way. In the previous example, the n variable is
a parameter to the outer function. Because the inner function lives inside the

82

environment of the outer one, it can use n. The bodies of such inner functions
can access the variables around them. They can play a role similar to the
{} blocks used in regular loops and conditional statements. An important
difference is that variables declared inside inner functions do not end up in the
environment of the outer function. And that is usually a good thing.

Passing along arguments
The noisy function defined earlier, which wraps its argument in another func-
tion, has a rather serious deficit.

function noisy(f) {

return function(arg) {

console.log(" calling with", arg);

var val = f(arg);

console.log(" called with", arg , "- got", val);

return val;

};

}

If f takes more than one parameter, it gets only the first one. We could add a
bunch of arguments to the inner function (arg1, arg2, and so on) and pass them
all to f, but it is not clear how many would be enough. This solution would
also deprive f of the information in arguments.length. Since we’d always pass
the same number of arguments, it wouldn’t know how many arguments were
originally given.

For these kinds of situations, JavaScript functions have an apply method.
You pass it an array (or array-like object) of arguments, and it will call the
function with those arguments.

function transparentWrapping(f) {

return function () {

return f.apply(null , arguments);

};

}

That’s a useless function, but it shows the pattern we are interested in—the
function it returns passes all of the given arguments, and only those arguments,
to f. It does this by passing its own arguments object to apply. The first argument
to apply, for which we are passing null here, can be used to simulate a method
call. We will come back to that in the next chapter.

83

JSON
Higher-order functions that somehow apply a function to the elements of an
array are widely used in JavaScript. The forEach method is the most primitive
such function. There are a number of other variants available as methods on
arrays. To familiarize ourselves with them, let’s play around with another data
set.

A few years ago, someone crawled through a lot of archives and put together
a book on the history of my family name (Haverbeke—meaning Oatbrook). I
opened it hoping to find knights, pirates, and alchemists … but the book turns
out to be mostly full of Flemish farmers. For my amusement, I extracted the
information on my direct ancestors and put it into a computer-readable format.

The file I created looks something like this:

[

{"name": "Emma de Milliano", "sex": "f",

"born": 1876, "died": 1956,

"father ": "Petrus de Milliano",

"mother ": "Sophia van Damme"},

{"name": "Carolus Haverbeke", "sex": "m",

"born": 1832, "died": 1905,

"father ": "Carel Haverbeke",

"mother ": "Maria van Brussel"},...

and so on

]

This format is called JSON (pronounced “Jason”), which stands for JavaScript
Object Notation. It is widely used as a data storage and communication format
on the Web.

JSON is similar to JavaScript’s way of writing arrays and objects, with a few
restrictions. All property names have to be surrounded by double quotes, and
only simple data expressions are allowed—no function calls, variables, or any-
thing that involves actual computation. Comments are not allowed in JSON.

JavaScript gives us functions, JSON.stringify and JSON.parse, that convert data
to and from this format. The first takes a JavaScript value and returns a
JSON-encoded string. The second takes such a string and converts it to the
value it encodes.

var string = JSON.stringify ({name: "X", born: 1980});

console.log(string);

// → {"name ":"X","born ":1980}

console.log(JSON.parse(string).born);

// → 1980

84

The variable ANCESTRY_FILE, available in the sandbox for this chapter and in a
downloadable file on the website(eloquentjavascript.net/2nd_edition/code#5),
contains the content of my JSON file as a string. Let’s decode it and see how
many people it contains.

var ancestry = JSON.parse(ANCESTRY_FILE);

console.log(ancestry.length);

// → 39

Filtering an array
To find the people in the ancestry data set who were young in 1924, the fol-
lowing function might be helpful. It filters out the elements in an array that
don’t pass a test.

function filter(array , test) {

var passed = [];

for (var i = 0; i < array.length; i++) {

if (test(array[i]))

passed.push(array[i]);

}

return passed;

}

console.log(filter(ancestry , function(person) {

return person.born > 1900 && person.born < 1925;

}));

// → [{name: "Philibert Haverbeke", ...}, ...]

This uses the argument named test, a function value, to fill in a “gap” in the
computation. The test function is called for each element, and its return value
determines whether an element is included in the returned array.

Three people in the file were alive and young in 1924: my grandfather,
grandmother, and great-aunt.

Note how the filter function, rather than deleting elements from the existing
array, builds up a new array with only the elements that pass the test. This
function is pure. It does not modify the array it is given.

Like forEach, filter is also a standard method on arrays. The example defined
the function only in order to show what it does internally. From now on, we’ll
use it like this instead:

console.log(ancestry.filter(function(person) {

85

http://eloquentjavascript.net/2nd_{}edition/code/ancestry.js
http://eloquentjavascript.net/2nd_{}edition/code/ancestry.js
http://eloquentjavascript.net/2nd_{}edition/code#{}5

return person.father == "Carel Haverbeke ";

}));

// → [{name: "Carolus Haverbeke", ...}]

Transforming with map
Say we have an array of objects representing people, produced by filtering the
ancestry array somehow. But we want an array of names, which is easier to
read.

The map method transforms an array by applying a function to all of its
elements and building a new array from the returned values. The new array
will have the same length as the input array, but its content will have been
“mapped” to a new form by the function.

function map(array , transform) {

var mapped = [];

for (var i = 0; i < array.length; i++)

mapped.push(transform(array[i]));

return mapped;

}

var overNinety = ancestry.filter(function(person) {

return person.died - person.born > 90;

});

console.log(map(overNinety , function(person) {

return person.name;

}));

// → ["Clara Aernoudts", "Emile Haverbeke",

// "Maria Haverbeke "]

Interestingly, the people who lived to at least 90 years of age are the same three
people who we saw before—the people who were young in the 1920s, which
happens to be the most recent generation in my data set. I guess medicine has
come a long way.

Like forEach and filter, map is also a standard method on arrays.

Summarizing with reduce
Another common pattern of computation on arrays is computing a single value
from them. Our recurring example, summing a collection of numbers, is an

86

instance of this. Another example would be finding the person with the earliest
year of birth in the data set.

The higher-order operation that represents this pattern is called reduce (or
sometimes fold). You can think of it as folding up the array, one element at
a time. When summing numbers, you’d start with the number zero and, for
each element, combine it with the current sum by adding the two.

The parameters to the reduce function are, apart from the array, a combining
function and a start value. This function is a little less straightforward than
filter and map, so pay close attention.

function reduce(array , combine , start) {

var current = start;

for (var i = 0; i < array.length; i++)

current = combine(current , array[i]);

return current;

}

console.log(reduce ([1, 2, 3, 4], function(a, b) {

return a + b;

}, 0));

// → 10

The standard array method reduce, which of course corresponds to this function,
has an added convenience. If your array contains at least one element, you are
allowed to leave off the start argument. The method will take the first element
of the array as its start value and start reducing at the second element.

To use reduce to find my most ancient known ancestor, we can write something
like this:

console.log(ancestry.reduce(function(min , cur) {

if (cur.born < min.born) return cur;

else return min;

}));

// → {name: "Pauwels van Haverbeke", born: 1535, ...}

Composability
Consider how we would have written the previous example (finding the person
with the earliest year of birth) without higher-order functions. The code is not
that much worse.

var min = ancestry [0];

87

for (var i = 1; i < ancestry.length; i++) {

var cur = ancestry[i];

if (cur.born < min.born)

min = cur;

}

console.log(min);

// → {name: "Pauwels van Haverbeke", born: 1535, ...}

There are a few more variables, and the program is two lines longer but still
quite easy to understand.

Higher-order functions start to shine when you need to compose functions.
As an example, let’s write code that finds the average age for men and for
women in the data set.

function average(array) {

function plus(a, b) { return a + b; }

return array.reduce(plus) / array.length;

}

function age(p) { return p.died - p.born; }

function male(p) { return p.sex == "m"; }

function female(p) { return p.sex == "f"; }

console.log(average(ancestry.filter(male).map(age)));

// → 61.67

console.log(average(ancestry.filter(female).map(age)));

// → 54.56

(It’s a bit silly that we have to define plus as a function, but operators in
JavaScript, unlike functions, are not values, so you can’t pass them as argu-
ments.)

Instead of tangling the logic into a big loop, it is neatly composed into the
concepts we are interested in—determining sex, computing age, and averaging
numbers. We can apply these one by one to get the result we are looking for.

This is fabulous for writing clear code. Unfortunately, this clarity comes at
a cost.

The cost
In the happy land of elegant code and pretty rainbows, there lives a spoil-sport
monster called inefficiency.

A program that processes an array is most elegantly expressed as a sequence
of cleanly separated steps that each do something with the array and produce a
new array. But building up all those intermediate arrays is somewhat expensive.

88

Likewise, passing a function to forEach and letting that method handle the
array iteration for us is convenient and easy to read. But function calls in
JavaScript are costly compared to simple loop bodies.

And so it goes with a lot of techniques that help improve the clarity of a
program. Abstractions add layers between the raw things the computer is doing
and the concepts we are working with and thus cause the machine to perform
more work. This is not an iron law—there are programming languages that
have better support for building abstractions without adding inefficiencies, and
even in JavaScript, an experienced programmer can find ways to write abstract
code that is still fast. But it is a problem that comes up a lot.

Fortunately, most computers are insanely fast. If you are processing a modest
set of data or doing something that has to happen only on a human time scale
(say, every time the user clicks a button), then it does not matter whether
you wrote a pretty solution that takes half a millisecond or a super-optimized
solution that takes a tenth of a millisecond.

It is helpful to roughly keep track of how often a piece of your program
is going to run. If you have a loop inside a loop (either directly or through
the outer loop calling a function that ends up performing the inner loop), the
code inside the inner loop will end up running N×M times, where N is the
number of times the outer loop repeats and M is the number of times the inner
loop repeats within each iteration of the outer loop. If that inner loop contains
another loop that makes P rounds, its body will run M×N×P times, and so on.
This can add up to large numbers, and when a program is slow, the problem
can often be traced to only a small part of the code, which sits inside an inner
loop.

Great-great-great-great-…
My grandfather, Philibert Haverbeke, is included in the data file. By starting
with him, I can trace my lineage to find out whether the most ancient person in
the data, Pauwels van Haverbeke, is my direct ancestor. And if he is, I would
like to know how much DNA I theoretically share with him.

To be able to go from a parent’s name to the actual object that represents
this person, we first build up an object that associates names with people.

var byName = {};

ancestry.forEach(function(person) {

byName[person.name] = person;

});

89

console.log(byName [" Philibert Haverbeke "]);

// → {name: "Philibert Haverbeke", ...}

Now, the problem is not entirely as simple as following the father properties
and counting how many we need to reach Pauwels. There are several cases in
the family tree where people married their second cousins (tiny villages and all
that). This causes the branches of the family tree to rejoin in a few places,
which means I share more than 1/2G of my genes with this person, where G
for the number of generations between Pauwels and me. This formula comes
from the idea that each generation splits the gene pool in two.

A reasonable way to think about this problem is to look at it as being anal-
ogous to reduce, which condenses an array to a single value by repeatedly com-
bining values, left to right. In this case, we also want to condense our data
structure to a single value but in a way that follows family lines. The shape of
the data is that of a family tree, rather than a flat list.

The way we want to reduce this shape is by computing a value for a given
person by combining values from their ancestors. This can be done recursively:
if we are interested in person A, we have to compute the values for A’s parents,
which in turn requires us to compute the value for A’s grandparents, and so
on. In principle, that’d require us to look at an infinite number of people, but
since our data set is finite, we have to stop somewhere. We’ll allow a default
value to be given to our reduction function, which will be used for people who
are not in the data. In our case, that value is simply zero, on the assumption
that people not in the list don’t share DNA with the ancestor we are looking
at.

Given a person, a function to combine values from the two parents of a given
person, and a default value, reduceAncestors condenses a value from a family
tree.

function reduceAncestors(person , f, defaultValue) {

function valueFor(person) {

if (person == null)

return defaultValue;

else

return f(person , valueFor(byName[person.mother]),

valueFor(byName[person.father]));

}

return valueFor(person);

}

The inner function (valueFor) handles a single person. Through the magic of
recursion, it can simply call itself to handle the father and the mother of this

90

person. The results, along with the person object itself, are passed to f, which
returns the actual value for this person.

We can then use this to compute the amount of DNA my grandfather shared
with Pauwels van Haverbeke and divide that by four.

function sharedDNA(person , fromMother , fromFather) {

if (person.name == "Pauwels van Haverbeke ")

return 1;

else

return (fromMother + fromFather) / 2;

}

var ph = byName [" Philibert Haverbeke "];

console.log(reduceAncestors(ph , sharedDNA , 0) / 4);

// → 0.00049

The person with the name Pauwels van Haverbeke obviously shared 100 percent
of his DNA with Pauwels van Haverbeke (there are no people who share names
in the data set), so the function returns 1 for him. All other people share the
average of the amounts that their parents share.

So, statistically speaking, I share about 0.05 percent of my DNA with this
16th-century person. It should be noted that this is only a statistical approxi-
mation, not an exact amount. It is a rather small number, but given how much
genetic material we carry (about 3 billion base pairs), there’s still probably
some aspect in the biological machine that is me that originates with Pauwels.

We could also have computed this number without relying on reduceAncestors

. But separating the general approach (condensing a family tree) from the
specific case (computing shared DNA) can improve the clarity of the code and
allows us to reuse the abstract part of the program for other cases. For example,
the following code finds the percentage of a person’s known ancestors who lived
past 70 (by lineage, so people may be counted multiple times):

function countAncestors(person , test) {

function combine(current , fromMother , fromFather) {

var thisOneCounts = current != person && test(current);

return fromMother + fromFather + (thisOneCounts ? 1 : 0);

}

return reduceAncestors(person , combine , 0);

}

function longLivingPercentage(person) {

var all = countAncestors(person , function(person) {

return true;

});

var longLiving = countAncestors(person , function(person) {

return (person.died - person.born) >= 70;

91

});

return longLiving / all;

}

console.log(longLivingPercentage(byName ["Emile Haverbeke "]));

// → 0.129

Such numbers are not to be taken too seriously, given that our data set contains
a rather arbitrary collection of people. But the code illustrates the fact that
reduceAncestors gives us a useful piece of vocabulary for working with the family
tree data structure.

Binding
The bind method, which all functions have, creates a new function that will call
the original function but with some of the arguments already fixed.

The following code shows an example of bind in use. It defines a function
isInSet that tells us whether a person is in a given set of strings. To call filter
in order to collect those person objects whose names are in a specific set, we
can either write a function expression that makes a call to isInSet with our set
as its first argument or partially apply the isInSet function.

var theSet = ["Carel Haverbeke", "Maria van Brussel",

"Donald Duck "];

function isInSet(set , person) {

return set.indexOf(person.name) > -1;

}

console.log(ancestry.filter(function(person) {

return isInSet(theSet , person);

}));

// → [{name: "Maria van Brussel", ...},

// {name: "Carel Haverbeke", ...}]

console.log(ancestry.filter(isInSet.bind(null , theSet)));

// →... same result

The call to bind returns a function that will call isInSet with theSet as first
argument, followed by any remaining arguments given to the bound function.

The first argument, where the example passes null, is used for method calls,
similar to the first argument to apply. I’ll describe this in more detail in the
next chapter.

92

Summary
Being able to pass function values to other functions is not just a gimmick but
a deeply useful aspect of JavaScript. It allows us to write computations with
“gaps” in them as functions and have the code that calls these functions fill in
those gaps by providing function values that describe the missing computations.

Arrays provide a number of useful higher-order methods—forEach to do some-
thing with each element in an array, filter to build a new array with some
elements filtered out, map to build a new array where each element has been put
through a function, and reduce to combine all an array’s elements into a single
value.

Functions have an apply method that can be used to call them with an array
specifying their arguments. They also have a bind method, which is used to
create a partially applied version of the function.

Exercises
Flattening
Use the reduce method in combination with the concat method to “flatten” an
array of arrays into a single array that has all the elements of the input arrays.

Mother-child age difference
Using the example data set from this chapter, compute the average age differ-
ence between mothers and children (the age of the mother when the child is
born). You can use the average function defined earlier in this chapter.

Note that not all the mothers mentioned in the data are themselves present
in the array. The byName object, which makes it easy to find a person’s object
from their name, might be useful here.

Historical life expectancy
When we looked up all the people in our data set that lived more than 90 years,
only the latest generation in the data came out. Let’s take a closer look at that
phenomenon.

Compute and output the average age of the people in the ancestry data set
per century. A person is assigned to a century by taking their year of death,
dividing it by 100, and rounding it up, as in Math.ceil(person.died / 100).

93

For bonus points, write a function groupBy that abstracts the grouping oper-
ation. It should accept as arguments an array and a function that computes
the group for an element in the array and returns an object that maps group
names to arrays of group members.

Every and then some
Arrays also come with the standard methods every and some. Both take a
predicate function that, when called with an array element as argument, returns
true or false. Just like && returns a true value only when the expressions on
both sides are true, every returns true only when the predicate returns true for
all elements of the array. Similarly, some returns true as soon as the predicate
returns true for any of the elements. They do not process more elements
than necessary—for example, if some finds that the predicate holds for the first
element of the array, it will not look at the values after that.

Write two functions, every and some, that behave like these methods, except
that they take the array as their first argument rather than being a method.

94

“The problem with object-oriented languages is they’ve got all this
implicit environment that they carry around with them. You wanted
a banana but what you got was a gorilla holding the banana and the
entire jungle.”

—Joe Armstrong, interviewed in Coders at Work

6 The Secret Life of Objects
When a programmer says “object”, this is a loaded term. In my profession,
objects are a way of life, the subject of holy wars, and a beloved buzzword that
still hasn’t quite lost its power.

To an outsider, this is probably a little confusing. Let’s start with a brief
history of objects as a programming construct.

History
This story, like most programming stories, starts with the problem of complex-
ity. One philosophy is that complexity can be made manageable by separating
it into small compartments that are isolated from each other. These compart-
ments have ended up with the name objects.

An object is a hard shell that hides the gooey complexity inside it and in-
stead offers us a few knobs and connectors (such as methods) that present an
interface through which the object is to be used. The idea is that the interface
is relatively simple and all the complex things going on inside the object can
be ignored when working with it.

95

As an example, you can imagine an object that provides an interface to an area
on your screen. It provides a way to draw shapes or text onto this area but
hides all the details of how these shapes are converted to the actual pixels that
make up the screen. You’d have a set of methods—for example, drawCircle—and
those are the only things you need to know in order to use such an object.

These ideas were initially worked out in the 1970s and 1980s and, in the
1990s, were carried up by a huge wave of hype—the object-oriented program-
ming revolution. Suddenly, there was a large tribe of people declaring that
objects were the right way to program—and that anything that did not involve
objects was outdated nonsense.

That kind of zealotry always produces a lot of impractical silliness, and there
has been a sort of counter-revolution since then. In some circles, objects have
a rather bad reputation nowadays.

I prefer to look at the issue from a practical, rather than ideological, an-
gle. There are several useful concepts, most importantly that of encapsulation
(distinguishing between internal complexity and external interface), that the
object-oriented culture has popularized. These are worth studying.

This chapter describes JavaScript’s rather eccentric take on objects and the
way they relate to some classical object-oriented techniques.

96

Methods
Methods are simply properties that hold function values. This is a simple
method:

var rabbit = {};

rabbit.speak = function(line) {

console.log("The rabbit says '" + line + " '");

};

rabbit.speak("I ' m alive .");

// → The rabbit says 'I ' m alive . '

Usually a method needs to do something with the object it was called on. When
a function is called as a method—looked up as a property and immediately
called, as in object.method()—the special variable this in its body will point to
the object that it was called on.

function speak(line) {

console.log("The " + this.type + " rabbit says '" +

line + " '");

}

var whiteRabbit = {type: "white", speak: speak};

var fatRabbit = {type: "fat", speak: speak};

whiteRabbit.speak("Oh my ears and whiskers , " +

"how late it ' s getting !");

// → The white rabbit says ' Oh my ears and whiskers , how

// late it ' s getting ! '

fatRabbit.speak("I could sure use a carrot right now.");

// → The fat rabbit says 'I could sure use a carrot

// right now . '

The code uses the this keyword to output the type of rabbit that is speaking.
Recall that the apply and bind methods both take a first argument that can be
used to simulate method calls. This first argument is in fact used to give a
value to this.

There is a method similar to apply, called call. It also calls the function it
is a method of but takes its arguments normally, rather than as an array. Like
apply and bind, call can be passed a specific this value.

speak.apply(fatRabbit , ["Burp !"]);

// → The fat rabbit says ' Burp ! '

speak.call({type: "old"}, "Oh my.");

// → The old rabbit says ' Oh my . '

97

Prototypes
Watch closely.

var empty = {};

console.log(empty.toString);

// → function toString ()...{}

console.log(empty.toString ());

// → [object Object]

I just pulled a property out of an empty object. Magic!
Well, not really. I have simply been withholding information about the way

JavaScript objects work. In addition to their set of properties, almost all objects
also have a prototype. A prototype is another object that is used as a fallback
source of properties. When an object gets a request for a property that it does
not have, its prototype will be searched for the property, then the prototype’s
prototype, and so on.

So who is the prototype of that empty object? It is the great ancestral
prototype, the entity behind almost all objects, Object.prototype.

console.log(Object.getPrototypeOf ({}) ==

Object.prototype);

// → true

console.log(Object.getPrototypeOf(Object.prototype));

// → null

As you might expect, the Object.getPrototypeOf function returns the prototype
of an object.

The prototype relations of JavaScript objects form a tree-shaped structure,
and at the root of this structure sits Object.prototype. It provides a few methods
that show up in all objects, such as toString, which converts an object to a
string representation.

Many objects don’t directly have Object.prototype as their prototype, but in-
stead have another object, which provides its own default properties. Functions
derive from Function.prototype, and arrays derive from Array.prototype.

console.log(Object.getPrototypeOf(isNaN) ==

Function.prototype);

// → true

console.log(Object.getPrototypeOf ([]) ==

Array.prototype);

// → true

Such a prototype object will itself have a prototype, often Object.prototype, so

98

that it still indirectly provides methods like toString.
The Object.getPrototypeOf function obviously returns the prototype of an ob-

ject. You can use Object.create to create an object with a specific prototype.

var protoRabbit = {

speak: function(line) {

console.log("The " + this.type + " rabbit says '" +

line + " '");

}

};

var killerRabbit = Object.create(protoRabbit);

killerRabbit.type = "killer ";

killerRabbit.speak(" SKREEEE !");

// → The killer rabbit says ' SKREEEE ! '

The “proto” rabbit acts as a container for the properties that are shared by all
rabbits. An individual rabbit object, like the killer rabbit, contains properties
that apply only to itself—in this case its type—and derives shared properties
from its prototype.

Constructors
A more convenient way to create objects that derive from some shared pro-
totype is to use a constructor. In JavaScript, calling a function with the new

keyword in front of it causes it to be treated as a constructor. The construc-
tor will have its this variable bound to a fresh object, and unless it explicitly
returns another object value, this new object will be returned from the call.

An object created with new is said to be an instance of its constructor.
Here is a simple constructor for rabbits. It is a convention to capitalize the

names of constructors so that they are easily distinguished from other functions.

function Rabbit(type) {

this.type = type;

}

var killerRabbit = new Rabbit (" killer ");

var blackRabbit = new Rabbit (" black");

console.log(blackRabbit.type);

// → black

Constructors (in fact, all functions) automatically get a property named prototype

, which by default holds a plain, empty object that derives from Object.prototype.
Every instance created with this constructor will have this object as its proto-

99

type. So to add a speak method to rabbits created with the Rabbit constructor,
we can simply do this:

Rabbit.prototype.speak = function(line) {

console.log("The " + this.type + " rabbit says '" +

line + " '");

};

blackRabbit.speak("Doom ...");

// → The black rabbit says ' Doom ... '

It is important to note the distinction between the way a prototype is associated
with a constructor (through its prototype property) and the way objects have
a prototype (which can be retrieved with Object.getPrototypeOf). The actual
prototype of a constructor is Function.prototype since constructors are functions.
Its prototype property will be the prototype of instances created through it but
is not its own prototype.

Overriding derived properties
When you add a property to an object, whether it is present in the prototype or
not, the property is added to the object itself, which will henceforth have it as
its own property. If there is a property by the same name in the prototype, this
property will no longer affect the object. The prototype itself is not changed.

Rabbit.prototype.teeth = "small";

console.log(killerRabbit.teeth);

// → small

killerRabbit.teeth = "long , sharp , and bloody ";

console.log(killerRabbit.teeth);

// → long , sharp , and bloody

console.log(blackRabbit.teeth);

// → small

console.log(Rabbit.prototype.teeth);

// → small

The following diagram sketches the situation after this code has run. The
Rabbit and Object prototypes lie behind killerRabbit as a kind of backdrop, where
properties that are not found in the object itself can be looked up.

100

toString: <function>
...

teeth: "small"
speak: <function>

killerRabbit

teeth: "long, sharp, ..."
adjective: "killer"

Rabbit

prototype

Object

create: <function>
prototype
...

Overriding properties that exist in a prototype is often a useful thing to do. As
the rabbit teeth example shows, it can be used to express exceptional properties
in instances of a more generic class of objects, while letting the nonexceptional
objects simply take a standard value from their prototype.

It is also used to give the standard function and array prototypes a different
toString method than the basic object prototype.

console.log(Array.prototype.toString ==

Object.prototype.toString);

// → false

console.log([1, 2]. toString ());

// → 1,2

Calling toString on an array gives a result similar to calling .join(",") on it—it
puts commas between the values in the array. Directly calling Object.prototype.

toString with an array produces a different string. That function doesn’t know
about arrays, so it simply puts the word “object” and the name of the type
between square brackets.

console.log(Object.prototype.toString.call([1, 2]));

// → [object Array]

Prototype interference
A prototype can be used at any time to add new properties and methods to all
objects based on it. For example, it might become necessary for our rabbits to
dance.

Rabbit.prototype.dance = function () {

console.log("The " + this.type + " rabbit dances a jig.");

};

killerRabbit.dance();

101

// → The killer rabbit dances a jig.

That’s convenient. But there are situations where it causes problems. In
previous chapters, we used an object as a way to associate values with names
by creating properties for the names and giving them the corresponding value
as their value. Here’s an example from Chapter 4:

var map = {};

function storePhi(event , phi) {

map[event] = phi;

}

storePhi ("pizza", 0.069);

storePhi (" touched tree", -0.081);

We can iterate over all phi values in the object using a for/in loop and test
whether a name is in there using the regular in operator. But unfortunately,
the object’s prototype gets in the way.

Object.prototype.nonsense = "hi";

for (var name in map)

console.log(name);

// → pizza

// → touched tree

// → nonsense

console.log(" nonsense" in map);

// → true

console.log(" toString" in map);

// → true

// Delete the problematic property again

delete Object.prototype.nonsense;

That’s all wrong. There is no event called “nonsense” in our data set. And
there definitely is no event called “toString”.

Oddly, toString did not show up in the for/in loop, but the in operator did
return true for it. This is because JavaScript distinguishes between enumerable
and nonenumerable properties.

All properties that we create by simply assigning to them are enumerable.
The standard properties in Object.prototype are all nonenumerable, which is why
they do not show up in such a for/in loop.

It is possible to define our own nonenumerable properties by using the Object

.defineProperty function, which allows us to control the type of property we are
creating.

102

Object.defineProperty(Object.prototype , "hiddenNonsense",

{enumerable: false , value: "hi"});

for (var name in map)

console.log(name);

// → pizza

// → touched tree

console.log(map.hiddenNonsense);

// → hi

So now the property is there, but it won’t show up in a loop. That’s good.
But we still have the problem with the regular in operator claiming that the
Object.prototype properties exist in our object. For that, we can use the object’s
hasOwnProperty method.

console.log(map.hasOwnProperty (" toString "));

// → false

This method tells us whether the object itself has the property, without looking
at its prototypes. This is often a more useful piece of information than what
the in operator gives us.

When you are worried that someone (some other code you loaded into your
program) might have messed with the base object prototype, I recommend you
write your for/in loops like this:

for (var name in map) {

if (map.hasOwnProperty(name)) {

// ... this is an own property

}

}

Prototype-less objects
But the rabbit hole doesn’t end there. What if someone registered the name
hasOwnProperty in our map object and set it to the value 42? Now the call to
map.hasOwnProperty will try to call the local property, which holds a number, not
a function.

In such a case, prototypes just get in the way, and we would actually prefer
to have objects without prototypes. We saw the Object.create function, which
allows us to create an object with a specific prototype. You are allowed to pass
null as the prototype to create a fresh object with no prototype. For objects
like map, where the properties could be anything, this is exactly what we want.

103

var map = Object.create(null);

map[" pizza"] = 0.069;

console.log(" toString" in map);

// → false

console.log("pizza" in map);

// → true

Much better! We no longer need the hasOwnProperty kludge because all the
properties the object has are its own properties. Now we can safely use for/in
loops, no matter what people have been doing to Object.prototype.

Polymorphism
When you call the String function, which converts a value to a string, on an ob-
ject, it will call the toString method on that object to try to create a meaningful
string to return. I mentioned that some of the standard prototypes define their
own version of toString so they can create a string that contains more useful
information than "[object Object]".

This is a simple instance of a powerful idea. When a piece of code is written
to work with objects that have a certain interface—in this case, a toString

method—any kind of object that happens to support this interface can be
plugged into the code, and it will just work.

This technique is called polymorphism—though no actual shape-shifting is
involved. Polymorphic code can work with values of different shapes, as long
as they support the interface it expects.

Laying out a table
I am going to work through a slightly more involved example in an attempt
to give you a better idea what polymorphism, as well as object-oriented pro-
gramming in general, looks like. The project is this: we will write a program
that, given an array of arrays of table cells, builds up a string that contains a
nicely laid out table—meaning that the columns are straight and the rows are
aligned. Something like this:

name height country

------------ ------ -------------

Kilimanjaro 5895 Tanzania

Everest 8848 Nepal

Mount Fuji 3776 Japan

Mont Blanc 4808 Italy/France

104

Vaalserberg 323 Netherlands

Denali 6168 United States

Popocatepetl 5465 Mexico

The way our table-building system will work is that the builder function will
ask each cell how wide and high it wants to be and then use this information
to determine the width of the columns and the height of the rows. The builder
function will then ask the cells to draw themselves at the correct size and
assemble the results into a single string.

The layout program will communicate with the cell objects through a well-
defined interface. That way, the types of cells that the program supports is not
fixed in advance. We can add new cell styles later—for example, underlined
cells for table headers—and if they support our interface, they will just work,
without requiring changes to the layout program.

This is the interface:

• minHeight() returns a number indicating the minimum height this cell re-
quires (in lines).

• minWidth() returns a number indicating this cell’s minimum width (in char-
acters).

• draw(width, height) returns an array of length height, which contains a
series of strings that are each width characters wide. This represents the
content of the cell.

I’m going to make heavy use of higher-order array methods in this example
since it lends itself well to that approach.

The first part of the program computes arrays of minimum column widths
and row heights for a grid of cells. The rows variable will hold an array of
arrays, with each inner array representing a row of cells.

function rowHeights(rows) {

return rows.map(function(row) {

return row.reduce(function(max , cell) {

return Math.max(max , cell.minHeight ());

}, 0);

});

}

function colWidths(rows) {

return rows [0]. map(function(_, i) {

return rows.reduce(function(max , row) {

105

return Math.max(max , row[i]. minWidth ());

}, 0);

});

}

Using a variable name starting with an underscore (_) or consisting entirely of
a single underscore is a way to indicate (to human readers) that this argument
is not going to be used.

The rowHeights function shouldn’t be too hard to follow. It uses reduce to
compute the maximum height of an array of cells and wraps that in map in
order to do it for all rows in the rows array.

Things are slightly harder for the colWidths function because the outer array
is an array of rows, not of columns. I have failed to mention so far that map (as
well as forEach, filter, and similar array methods) passes a second argument
to the function it is given: the index of the current element. By mapping
over the elements of the first row and only using the mapping function’s second
argument, colWidths builds up an array with one element for every column index.
The call to reduce runs over the outer rows array for each index and picks out
the width of the widest cell at that index.

Here’s the code to draw a table:

function drawTable(rows) {

var heights = rowHeights(rows);

var widths = colWidths(rows);

function drawLine(blocks , lineNo) {

return blocks.map(function(block) {

return block[lineNo];

}).join(" ");

}

function drawRow(row , rowNum) {

var blocks = row.map(function(cell , colNum) {

return cell.draw(widths[colNum], heights[rowNum]);

});

return blocks [0]. map(function(_, lineNo) {

return drawLine(blocks , lineNo);

}).join ("\n");

}

return rows.map(drawRow).join ("\n");

}

The drawTable function uses the internal helper function drawRow to draw all rows

106

and then joins them together with newline characters.
The drawRow function itself first converts the cell objects in the row to blocks,

which are arrays of strings representing the content of the cells, split by line.
A single cell containing simply the number 3776 might be represented by a
single-element array like ["3776"], whereas an underlined cell might take up two
lines and be represented by the array ["name", "----"].

The blocks for a row, which all have the same height, should appear next to
each other in the final output. The second call to map in drawRow builds up this
output line by line by mapping over the lines in the leftmost block and, for each
of those, collecting a line that spans the full width of the table. These lines
are then joined with newline characters to provide the whole row as drawRow’s
return value.

The function drawLine extracts lines that should appear next to each other
from an array of blocks and joins them with a space character to create a
one-character gap between the table’s columns.

Now let’s write a constructor for cells that contain text, which implements
the interface for table cells. The constructor splits a string into an array of
lines using the string method split, which cuts up a string at every occurrence
of its argument and returns an array of the pieces. The minWidth method finds
the maximum line width in this array.

function repeat(string , times) {

var result = "";

for (var i = 0; i < times; i++)

result += string;

return result;

}

function TextCell(text) {

this.text = text.split ("\n");

}

TextCell.prototype.minWidth = function () {

return this.text.reduce(function(width , line) {

return Math.max(width , line.length);

}, 0);

};

TextCell.prototype.minHeight = function () {

return this.text.length;

};

TextCell.prototype.draw = function(width , height) {

var result = [];

for (var i = 0; i < height; i++) {

var line = this.text[i] || "";

107

result.push(line + repeat (" ", width - line.length));

}

return result;

};

The code uses a helper function called repeat, which builds a string whose value
is the string argument repeated times number of times. The draw method uses
it to add “padding” to lines so that they all have the required length.

Let’s try everything we’ve written so far by building up a 5 × 5 checkerboard.

var rows = [];

for (var i = 0; i < 5; i++) {

var row = [];

for (var j = 0; j < 5; j++) {

if ((j + i) % 2 == 0)

row.push(new TextCell ("##"));

else

row.push(new TextCell (" "));

}

rows.push(row);

}

console.log(drawTable(rows));

// → ## ## ##

// ## ##

// ## ## ##

// ## ##

// ## ## ##

It works! But since all cells have the same size, the table-layout code doesn’t
really do anything interesting.

The source data for the table of mountains that we are trying to build is
available in the MOUNTAINS variable in the sandbox and also downloadable from
the website(eloquentjavascript.net/2nd_edition/code#6).

We will want to highlight the top row, which contains the column names, by
underlining the cells with a series of dash characters. No problem—we simply
write a cell type that handles underlining.

function UnderlinedCell(inner) {

this.inner = inner;

}

UnderlinedCell.prototype.minWidth = function () {

return this.inner.minWidth ();

};

UnderlinedCell.prototype.minHeight = function () {

return this.inner.minHeight () + 1;

108

http://eloquentjavascript.net/2nd_{}edition/code/mountains.js
http://eloquentjavascript.net/2nd_{}edition/code#{}6

};

UnderlinedCell.prototype.draw = function(width , height) {

return this.inner.draw(width , height - 1)

.concat ([repeat("-", width)]);

};

An underlined cell contains another cell. It reports its minimum size as being
the same as that of its inner cell (by calling through to that cell’s minWidth and
minHeight methods) but adds one to the height to account for the space taken
up by the underline.

Drawing such a cell is quite simple—we take the content of the inner cell and
concatenate a single line full of dashes to it.

Having an underlining mechanism, we can now write a function that builds
up a grid of cells from our data set.

function dataTable(data) {

var keys = Object.keys(data [0]);

var headers = keys.map(function(name) {

return new UnderlinedCell(new TextCell(name));

});

var body = data.map(function(row) {

return keys.map(function(name) {

return new TextCell(String(row[name]));

});

});

return [headers]. concat(body);

}

console.log(drawTable(dataTable(MOUNTAINS)));

// → name height country

// ------------ ------ -------------

// Kilimanjaro 5895 Tanzania

// ... etcetera

The standard Object.keys function returns an array of property names in an
object. The top row of the table must contain underlined cells that give the
names of the columns. Below that, the values of all the objects in the data
set appear as normal cells—we extract them by mapping over the keys array so
that we are sure that the order of the cells is the same in every row.

The resulting table resembles the example shown before, except that it does
not right-align the numbers in the height column. We will get to that in a
moment.

109

Getters and setters
When specifying an interface, it is possible to include properties that are not
methods. We could have defined minHeight and minWidth to simply hold numbers.
But that’d have required us to compute them in the constructor, which adds
code there that isn’t strictly relevant to constructing the object. It would cause
problems if, for example, the inner cell of an underlined cell was changed, at
which point the size of the underlined cell should also change.

This has led some people to adopt a principle of never including nonmethod
properties in interfaces. Rather than directly access a simple value property,
they’d use getSomething and setSomething methods to read and write the property.
This approach has the downside that you will end up writing—and reading—a
lot of additional methods.

Fortunately, JavaScript provides a technique that gets us the best of both
worlds. We can specify properties that, from the outside, look like normal
properties but secretly have methods associated with them.

var pile = {

elements: [" eggshell", "orange peel", "worm"],

get height () {

return this.elements.length;

},

set height(value) {

console.log(" Ignoring attempt to set height to", value);

}

};

console.log(pile.height);

// → 3

pile.height = 100;

// → Ignoring attempt to set height to 100

In an object literal, the get or set notation for properties allows you to specify
a function to be run when the property is read or written. You can also add
such a property to an existing object, for example a prototype, using the Object

.defineProperty function (which we previously used to create nonenumerable
properties).

Object.defineProperty(TextCell.prototype , "heightProp", {

get: function () { return this.text.length; }

});

var cell = new TextCell ("no\nway");

console.log(cell.heightProp);

110

// → 2

cell.heightProp = 100;

console.log(cell.heightProp);

// → 2

You can use a similar set property, in the object passed to defineProperty, to
specify a setter method. When a getter but no setter is defined, writing to the
property is simply ignored.

Inheritance
We are not quite done yet with our table layout exercise. It helps readability
to right-align columns of numbers. We should create another cell type that is
like TextCell, but rather than padding the lines on the right side, it pads them
on the left side so that they align to the right.

We could simply write a whole new constructor with all three methods in its
prototype. But prototypes may themselves have prototypes, and this allows us
to do something clever.

function RTextCell(text) {

TextCell.call(this , text);

}

RTextCell.prototype = Object.create(TextCell.prototype);

RTextCell.prototype.draw = function(width , height) {

var result = [];

for (var i = 0; i < height; i++) {

var line = this.text[i] || "";

result.push(repeat (" ", width - line.length) + line);

}

return result;

};

We reuse the constructor and the minHeight and minWidth methods from the reg-
ular TextCell. An RTextCell is now basically equivalent to a TextCell, except that
its draw method contains a different function.

This pattern is called inheritance. It allows us to build slightly different data
types from existing data types with relatively little work. Typically, the new
constructor will call the old constructor (using the call method in order to be
able to give it the new object as its this value). Once this constructor has been
called, we can assume that all the fields that the old object type is supposed to
contain have been added. We arrange for the constructor’s prototype to derive
from the old prototype so that instances of this type will also have access to the

111

properties in that prototype. Finally, we can override some of these properties
by adding them to our new prototype.

Now, if we slightly adjust the dataTable function to use RTextCells for cells
whose value is a number, we get the table we were aiming for.

function dataTable(data) {

var keys = Object.keys(data [0]);

var headers = keys.map(function(name) {

return new UnderlinedCell(new TextCell(name));

});

var body = data.map(function(row) {

return keys.map(function(name) {

var value = row[name];

// This was changed:

if (typeof value == "number ")

return new RTextCell(String(value));

else

return new TextCell(String(value));

});

});

return [headers]. concat(body);

}

console.log(drawTable(dataTable(MOUNTAINS)));

// →... beautifully aligned table

Inheritance is a fundamental part of the object-oriented tradition, alongside
encapsulation and polymorphism. But while the latter two are now generally
regarded as wonderful ideas, inheritance is somewhat controversial.

The main reason for this is that it is often confused with polymorphism,
sold as a more powerful tool than it really is, and subsequently overused in all
kinds of ugly ways. Whereas encapsulation and polymorphism can be used to
separate pieces of code from each other, reducing the tangledness of the overall
program, inheritance fundamentally ties types together, creating more tangle.

You can have polymorphism without inheritance, as we saw. I am not going
to tell you to avoid inheritance entirely—I use it regularly in my own programs.
But you should see it as a slightly dodgy trick that can help you define new types
with little code, not as a grand principle of code organization. A preferable way
to extend types is through composition, such as how UnderlinedCell builds on
another cell object by simply storing it in a property and forwarding method
calls to it in its own methods.

112

The instanceof operator
It is occasionally useful to know whether an object was derived from a specific
constructor. For this, JavaScript provides a binary operator called instanceof.

console.log(new RTextCell ("A") instanceof RTextCell);

// → true

console.log(new RTextCell ("A") instanceof TextCell);

// → true

console.log(new TextCell ("A") instanceof RTextCell);

// → false

console.log ([1] instanceof Array);

// → true

The operator will see through inherited types. An RTextCell is an instance of
TextCell because RTextCell.prototype derives from TextCell.prototype. The opera-
tor can be applied to standard constructors like Array. Almost every object is
an instance of Object.

Summary
So objects are more complicated than I initially portrayed them. They have
prototypes, which are other objects, and will act as if they have properties
they don’t have as long as the prototype has that property. Simple objects
have Object.prototype as their prototype.

Constructors, which are functions whose names usually start with a capital
letter, can be used with the new operator to create new objects. The new object’s
prototype will be the object found in the prototype property of the constructor
function. You can make good use of this by putting the properties that all
values of a given type share into their prototype. The instanceof operator can,
given an object and a constructor, tell you whether that object is an instance
of that constructor.

One useful thing to do with objects is to specify an interface for them and
tell everybody that they are supposed to talk to your object only through that
interface. The rest of the details that make up your object are now encapsulated,
hidden behind the interface.

Once you are talking in terms of interfaces, who says that only one kind of
object may implement this interface? Having different objects expose the same
interface and then writing code that works on any object with the interface is
called polymorphism. It is very useful.

When implementing multiple types that differ in only some details, it can

113

be helpful to simply make the prototype of your new type derive from the
prototype of your old type and have your new constructor call the old one.
This gives you an object type similar to the old type but for which you can
add and override properties as you see fit.

Exercises
A vector type
Write a constructor Vector that represents a vector in two-dimensional space.
It takes x and y parameters (numbers), which it should save to properties of
the same name.

Give the Vector prototype two methods, plus and minus, that take another
vector as a parameter and return a new vector that has the sum or difference
of the two vectors’ (the one in this and the parameter) x and y values.

Add a getter property length to the prototype that computes the length of
the vector—that is, the distance of the point (x, y) from the origin (0, 0).

Another cell
Implement a cell type named StretchCell(inner, width, height) that conforms to
the table cell interface described earlier in the chapter. It should wrap another
cell (like UnderlinedCell does) and ensure that the resulting cell has at least the
given width and height, even if the inner cell would naturally be smaller.

Sequence interface
Design an interface that abstracts iteration over a collection of values. An
object that provides this interface represents a sequence, and the interface
must somehow make it possible for code that uses such an object to iterate
over the sequence, looking at the element values it is made up of and having
some way to find out when the end of the sequence is reached.

When you have specified your interface, try to write a function logFive that
takes a sequence object and calls console.log on its first five elements—or fewer,
if the sequence has fewer than five elements.

Then implement an object type ArraySeq that wraps an array and allows
iteration over the array using the interface you designed. Implement another
object type RangeSeq that iterates over a range of integers (taking from and to

arguments to its constructor) instead.

114

“[…] the question of whether Machines Can Think […] is about as
relevant as the question of whether Submarines Can Swim.”

—Edsger Dijkstra, The Threats to Computing Science

7 Project: Electronic Life
In “project” chapters, I’ll stop pummeling you with new theory for a brief
moment and instead work through a program with you. Theory is indispens-
able when learning to program, but it should be accompanied by reading and
understanding nontrivial programs.

Our project in this chapter is to build a virtual ecosystem, a little world
populated with critters that move around and struggle for survival.

Definition
To make this task manageable, we will radically simplify the concept of a world.
Namely, a world will be a two-dimensional grid where each entity takes up one
full square of the grid. On every turn, the critters all get a chance to take some
action.

Thus, we chop both time and space into units with a fixed size: squares for
space and turns for time. Of course, this is a somewhat crude and inaccurate
approximation. But our simulation is intended to be amusing, not accurate, so
we can freely cut such corners.

We can define a world with a plan, an array of strings that lays out the
world’s grid using one character per square.

var plan = ["############################" ,

"# # # o ##",

"# #",

"# ##### #",

"## # # ## #",

"### ## # #",

"# ### # #",

"# #### #",

"# ## o #",

"# o # o ### #",

"# # #",

"############################"];

The “#” characters in this plan represent walls and rocks, and the “o” char-
acters represent critters. The spaces, as you might have guessed, are empty

115

space.
A plan array can be used to create a world object. Such an object keeps

track of the size and content of the world. It has a toString method, which
converts the world back to a printable string (similar to the plan it was based
on) so that we can see what’s going on inside. The world object also has a turn

method, which allows all the critters in it to take one turn and updates the
world to reflect their actions.

Representing space
The grid that models the world has a fixed width and height. Squares are
identified by their x- and y-coordinates. We use a simple type, Vector (as seen
in the exercises for the previous chapter), to represent these coordinate pairs.

function Vector(x, y) {

this.x = x;

this.y = y;

}

Vector.prototype.plus = function(other) {

return new Vector(this.x + other.x, this.y + other.y);

};

Next, we need an object type that models the grid itself. A grid is part of
a world, but we are making it a separate object (which will be a property
of a world object) to keep the world object itself simple. The world should
concern itself with world-related things, and the grid should concern itself with
grid-related things.

To store a grid of values, we have several options. We can use an array of
row arrays and use two property accesses to get to a specific square, like this:

var grid = [["top left", "top middle", "top right"],

[" bottom left", "bottom middle", "bottom right "]];

console.log(grid [1][2]);

// → bottom right

Or we can use a single array, with size width × height, and decide that the
element at (x,y) is found at position x + (y × width) in the array.

var grid = ["top left", "top middle", "top right",

"bottom left", "bottom middle", "bottom right "];

console.log(grid[2 + (1 * 3)]);

// → bottom right

116

Since the actual access to this array will be wrapped in methods on the grid
object type, it doesn’t matter to outside code which approach we take. I chose
the second representation because it makes it much easier to create the array.
When calling the Array constructor with a single number as an argument, it
creates a new empty array of the given length.

This code defines the Grid object, with some basic methods:

function Grid(width , height) {

this.space = new Array(width * height);

this.width = width;

this.height = height;

}

Grid.prototype.isInside = function(vector) {

return vector.x >= 0 && vector.x < this.width &&

vector.y >= 0 && vector.y < this.height;

};

Grid.prototype.get = function(vector) {

return this.space[vector.x + this.width * vector.y];

};

Grid.prototype.set = function(vector , value) {

this.space[vector.x + this.width * vector.y] = value;

};

And here is a trivial test:

var grid = new Grid(5, 5);

console.log(grid.get(new Vector(1, 1)));

// → undefined

grid.set(new Vector(1, 1), "X");

console.log(grid.get(new Vector(1, 1)));

// → X

A critter’s programming interface
Before we can start on the World constructor, we must get more specific about
the critter objects that will be living inside it. I mentioned that the world
will ask the critters what actions they want to take. This works as follows:
each critter object has an act method that, when called, returns an action. An
action is an object with a type property, which names the type of action the
critter wants to take, for example "move". The action may also contain extra
information, such as the direction the critter wants to move in.

Critters are terribly myopic and can see only the squares directly around
them on the grid. But even this limited vision can be useful when deciding

117

which action to take. When the act method is called, it is given a view object
that allows the critter to inspect its surroundings. We name the eight surround-
ing squares by their compass directions: "n" for north, "ne" for northeast, and
so on. Here’s the object we will use to map from direction names to coordinate
offsets:

var directions = {

"n": new Vector(0, -1),

"ne": new Vector(1, -1),

"e": new Vector(1, 0),

"se": new Vector(1, 1),

"s": new Vector(0, 1),

"sw": new Vector(-1, 1),

"w": new Vector(-1, 0),

"nw": new Vector(-1, -1)

};

The view object has a method look, which takes a direction and returns a
character, for example "\#" when there is a wall in that direction, or " " (space)
when there is nothing there. The object also provides the convenient methods
find and findAll. Both take a map character as an argument. The first returns
a direction in which the character can be found next to the critter or returns
null if no such direction exists. The second returns an array containing all
directions with that character. For example, a creature sitting left (west) of a
wall will get ["ne", "e", "se"] when calling findAll on its view object with the
"\#" character as argument.

Here is a simple, stupid critter that just follows its nose until it hits an
obstacle and then bounces off in a random open direction:

function randomElement(array) {

return array[Math.floor(Math.random () * array.length)];

}

var directionNames = "n ne e se s sw w nw".split(" ");

function BouncingCritter () {

this.direction = randomElement(directionNames);

};

BouncingCritter.prototype.act = function(view) {

if (view.look(this.direction) != " ")

this.direction = view.find(" ") || "s";

return {type: "move", direction: this.direction };

};

118

The randomElement helper function simply picks a random element from an array,
using Math.random plus some arithmetic to get a random index. We’ll use this
again later because randomness can be useful in simulations.

To pick a random direction, the BouncingCritter constructor calls randomElement

on an array of direction names. We could also have used Object.keys to get
this array from the directions object we defined earlier, but that provides no
guarantees about the order in which the properties are listed. In most situa-
tions, modern JavaScript engines will return properties in the order they were
defined, but they are not required to.

The “|| "s"” in the act method is there to prevent this.direction from getting
the value null if the critter is somehow trapped with no empty space around it
(for example when crowded into a corner by other critters).

The world object
Now we can start on the World object type. The constructor takes a plan (the
array of strings representing the world’s grid, described earlier) and a legend
as arguments. A legend is an object that tells us what each character in the
map means. It contains a constructor for every character—except for the space
character, which always refers to null, the value we’ll use to represent empty
space.

function elementFromChar(legend , ch) {

if (ch == " ")

return null;

var element = new legend[ch]();

element.originChar = ch;

return element;

}

function World(map , legend) {

var grid = new Grid(map [0]. length , map.length);

this.grid = grid;

this.legend = legend;

map.forEach(function(line , y) {

for (var x = 0; x < line.length; x++)

grid.set(new Vector(x, y),

elementFromChar(legend , line[x]));

});

}

119

In elementFromChar, first we create an instance of the right type by looking up
the character’s constructor and applying new to it. Then we add an originChar

property to it to make it easy to find out what character the element was
originally created from.

We need this originChar property when implementing the world’s toString

method. This method builds up a maplike string from the world’s current
state by performing a two-dimensional loop over the squares on the grid.

function charFromElement(element) {

if (element == null)

return " ";

else

return element.originChar;

}

World.prototype.toString = function () {

var output = "";

for (var y = 0; y < this.grid.height; y++) {

for (var x = 0; x < this.grid.width; x++) {

var element = this.grid.get(new Vector(x, y));

output += charFromElement(element);

}

output += "\n";

}

return output;

};

A wall is a simple object—it is used only for taking up space and has no act

method.

function Wall() {}

When we try the World object by creating an instance based on the plan from
earlier in the chapter and then calling toString on it, we get a string very similar
to the plan we put in.

var world = new World(plan , {"#": Wall ,

"o": BouncingCritter });

console.log(world.toString ());

// → ############################

// # # # o ##

// # #

// # ##### #

// ## # # ## #

// ### ## # #

120

// # ### # #

// # #### #

// # ## o #

// # o # o ### #

// # # #

// ############################

this and its scope
The World constructor contains a call to forEach. One interesting thing to note
is that inside the function passed to forEach, we are no longer directly in the
function scope of the constructor. Each function call gets its own this binding,
so the this in the inner function does not refer to the newly constructed object
that the outer this refers to. In fact, when a function isn’t called as a method,
this will refer to the global object.

This means that we can’t write this.grid to access the grid from inside the
loop. Instead, the outer function creates a normal local variable, grid, through
which the inner function gets access to the grid.

This is a bit of a design blunder in JavaScript. Fortunately, the next version
of the language provides a solution for this problem. Meanwhile, there are
workarounds. A common pattern is to say var self = this and from then on
refer to self, which is a normal variable and thus visible to inner functions.

Another solution is to use the bind method, which allows us to provide an
explicit this object to bind to.

var test = {

prop: 10,

addPropTo: function(array) {

return array.map(function(elt) {

return this.prop + elt;

}.bind(this));

}

};

console.log(test.addPropTo ([5]));

// → [15]

The function passed to map is the result of the bind call and thus has its this

bound to the first argument given to bind—the outer function’s this value
(which holds the test object).

Most standard higher-order methods on arrays, such as forEach and map, take
an optional second argument that can also be used to provide a this for the

121

calls to the iteration function. So you could express the previous example in a
slightly simpler way.

var test = {

prop: 10,

addPropTo: function(array) {

return array.map(function(elt) {

return this.prop + elt;

}, this); // ← no bind

}

};

console.log(test.addPropTo ([5]));

// → [15]

This works only for higher-order functions that support such a context param-
eter. When they don’t, you’ll need to use one of the other approaches.

In our own higher-order functions, we can support such a context parameter
by using the call method to call the function given as an argument. For exam-
ple, here is a forEach method for our Grid type, which calls a given function for
each element in the grid that isn’t null or undefined:

Grid.prototype.forEach = function(f, context) {

for (var y = 0; y < this.height; y++) {

for (var x = 0; x < this.width; x++) {

var value = this.space[x + y * this.width];

if (value != null)

f.call(context , value , new Vector(x, y));

}

}

};

Animating life
The next step is to write a turn method for the world object that gives the
critters a chance to act. It will go over the grid using the forEach method we
just defined, looking for objects with an act method. When it finds one, turn

calls that method to get an action object and carries out the action when it is
valid. For now, only "move" actions are understood.

There is one potential problem with this approach. Can you spot it? If we
let critters move as we come across them, they may move to a square that we
haven’t looked at yet, and we’ll allow them to move again when we reach that
square. Thus, we have to keep an array of critters that have already had their

122

turn and ignore them when we see them again.

World.prototype.turn = function () {

var acted = [];

this.grid.forEach(function(critter , vector) {

if (critter.act && acted.indexOf(critter) == -1) {

acted.push(critter);

this.letAct(critter , vector);

}

}, this);

};

We use the second parameter to the grid’s forEach method to be able to access
the correct this inside the inner function. The letAct method contains the actual
logic that allows the critters to move.

World.prototype.letAct = function(critter , vector) {

var action = critter.act(new View(this , vector));

if (action && action.type == "move") {

var dest = this.checkDestination(action , vector);

if (dest && this.grid.get(dest) == null) {

this.grid.set(vector , null);

this.grid.set(dest , critter);

}

}

};

World.prototype.checkDestination = function(action , vector) {

if (directions.hasOwnProperty(action.direction)) {

var dest = vector.plus(directions[action.direction]);

if (this.grid.isInside(dest))

return dest;

}

};

First, we simply ask the critter to act, passing it a view object that knows
about the world and the critter’s current position in that world (we’ll define
View in a moment). The act method returns an action of some kind.

If the action’s type is not "move", it is ignored. If it is "move", if it has a direction

property that refers to a valid direction, and if the square in that direction is
empty (null), we set the square where the critter used to be to hold null and
store the critter in the destination square.

Note that letAct takes care to ignore nonsense input—it doesn’t assume that
the action’s direction property is valid or that the type property makes sense.
This kind of defensive programming makes sense in some situations. The main

123

reason for doing it is to validate inputs coming from sources you don’t control
(such as user or file input), but it can also be useful to isolate subsystems from
each other. In this case, the intention is that the critters themselves can be
programmed sloppily—they don’t have to verify if their intended actions make
sense. They can just request an action, and the world will figure out whether
to allow it.

These two methods are not part of the external interface of a World object.
They are an internal detail. Some languages provide ways to explicitly declare
certain methods and properties private and signal an error when you try to use
them from outside the object. JavaScript does not, so you will have to rely
on some other form of communication to describe what is part of an object’s
interface. Sometimes it can help to use a naming scheme to distinguish between
external and internal properties, for example by prefixing all internal ones with
an underscore character (_). This will make accidental uses of properties that
are not part of an object’s interface easier to spot.

The one missing part, the View type, looks like this:

function View(world , vector) {

this.world = world;

this.vector = vector;

}

View.prototype.look = function(dir) {

var target = this.vector.plus(directions[dir]);

if (this.world.grid.isInside(target))

return charFromElement(this.world.grid.get(target));

else

return "#";

};

View.prototype.findAll = function(ch) {

var found = [];

for (var dir in directions)

if (this.look(dir) == ch)

found.push(dir);

return found;

};

View.prototype.find = function(ch) {

var found = this.findAll(ch);

if (found.length == 0) return null;

return randomElement(found);

};

The look method figures out the coordinates that we are trying to look at and,
if they are inside the grid, finds the character corresponding to the element that

124

sits there. For coordinates outside the grid, look simply pretends that there is
a wall there so that if you define a world that isn’t walled in, the critters still
won’t be tempted to try to walk off the edges.

It moves
We instantiated a world object earlier. Now that we’ve added all the necessary
methods, it should be possible to actually make the world move.

for (var i = 0; i < 5; i++) {

world.turn();

console.log(world.toString ());

}

// →... five turns of moving critters

The first two maps that are displayed will look something like this (depending
on the random direction the critters picked):

############################ ############################

##

o # #

o

#

#

#

#

#

o ### # #o # ###

#o # o # # # o o #

############################ ############################

They move! To get a more interactive view of these critters crawling around
and bouncing off the walls, open this chapter in the online version of the book
at eloquentjavascript.net.

More life forms
The dramatic highlight of our world, if you watch for a bit, is when two critters
bounce off each other. Can you think of another interesting form of behavior?

The one I came up with is a critter that moves along walls. Conceptually,
the critter keeps its left hand (paw, tentacle, whatever) to the wall and follows
along. This turns out to be not entirely trivial to implement.

125

http://eloquentjavascript.net/2nd_{}edition/

We need to be able to “compute” with compass directions. Since directions
are modeled by a set of strings, we need to define our own operation (dirPlus)
to calculate relative directions. So dirPlus("n", 1) means one 45-degree turn
clockwise from north, giving "ne". Similarly, dirPlus("s", -2) means 90 degrees
counterclockwise from south, which is east.

function dirPlus(dir , n) {

var index = directionNames.indexOf(dir);

return directionNames [(index + n + 8) % 8];

}

function WallFollower () {

this.dir = "s";

}

WallFollower.prototype.act = function(view) {

var start = this.dir;

if (view.look(dirPlus(this.dir , -3)) != " ")

start = this.dir = dirPlus(this.dir , -2);

while (view.look(this.dir) != " ") {

this.dir = dirPlus(this.dir , 1);

if (this.dir == start) break;

}

return {type: "move", direction: this.dir};

};

The act method only has to “scan” the critter’s surroundings, starting from its
left side and going clockwise until it finds an empty square. It then moves in
the direction of that empty square.

What complicates things is that a critter may end up in the middle of empty
space, either as its start position or as a result of walking around another
critter. If we apply the approach I just described in empty space, the poor
critter will just keep on turning left at every step, running in circles.

So there is an extra check (the if statement) to start scanning to the left
only if it looks like the critter has just passed some kind of obstacle—that is,
if the space behind and to the left of the critter is not empty. Otherwise, the
critter starts scanning directly ahead, so that it’ll walk straight when in empty
space.

And finally, there’s a test comparing this.dir to start after every pass through
the loop to make sure that the loop won’t run forever when the critter is walled
in or crowded in by other critters and can’t find an empty square.

126

A more lifelike simulation
To make life in our world more interesting, we will add the concepts of food
and reproduction. Each living thing in the world gets a new property, energy,
which is reduced by performing actions and increased by eating things. When
the critter has enough energy, it can reproduce, generating a new critter of the
same kind. To keep things simple, the critters in our world reproduce asexually,
all by themselves.

If critters only move around and eat one another, the world will soon suc-
cumb to the law of increasing entropy, run out of energy, and become a lifeless
wasteland. To prevent this from happening (too quickly, at least), we add
plants to the world. Plants do not move. They just use photosynthesis to grow
(that is, increase their energy) and reproduce.

To make this work, we’ll need a world with a different letAct method. We
could just replace the method of the World prototype, but I’ve become very
attached to our simulation with the wall-following critters and would hate to
break that old world.

One solution is to use inheritance. We create a new constructor, LifelikeWorld
, whose prototype is based on the World prototype but which overrides the letAct

method. The new letAct method delegates the work of actually performing an
action to various functions stored in the actionTypes object.

function LifelikeWorld(map , legend) {

World.call(this , map , legend);

}

LifelikeWorld.prototype = Object.create(World.prototype);

var actionTypes = Object.create(null);

LifelikeWorld.prototype.letAct = function(critter , vector) {

var action = critter.act(new View(this , vector));

var handled = action &&

action.type in actionTypes &&

actionTypes[action.type].call(this , critter ,

vector , action);

if (! handled) {

critter.energy -= 0.2;

if (critter.energy <= 0)

this.grid.set(vector , null);

}

};

The new letAct method first checks whether an action was returned at all, then

127

whether a handler function for this type of action exists, and finally whether
that handler returned true, indicating that it successfully handled the action.
Note the use of call to give the handler access to the world, through its this

binding.
If the action didn’t work for whatever reason, the default action is for the

creature to simply wait. It loses one-fifth point of energy, and if its energy level
drops to zero or below, the creature dies and is removed from the grid.

Action handlers
The simplest action a creature can perform is "grow", used by plants. When an
action object like {type: "grow"} is returned, the following handler method will
be called:

actionTypes.grow = function(critter) {

critter.energy += 0.5;

return true;

};

Growing always succeeds and adds half a point to the plant’s energy level.
Moving is more involved.

actionTypes.move = function(critter , vector , action) {

var dest = this.checkDestination(action , vector);

if (dest == null ||

critter.energy <= 1 ||

this.grid.get(dest) != null)

return false;

critter.energy -= 1;

this.grid.set(vector , null);

this.grid.set(dest , critter);

return true;

};

This action first checks, using the checkDestinationmethod defined earlier, whether
the action provides a valid destination. If not, or if the destination isn’t empty,
or if the critter lacks the required energy, move returns false to indicate no action
was taken. Otherwise, it moves the critter and subtracts the energy cost.

In addition to moving, critters can eat.

actionTypes.eat = function(critter , vector , action) {

var dest = this.checkDestination(action , vector);

var atDest = dest != null && this.grid.get(dest);

if (! atDest || atDest.energy == null)

128

return false;

critter.energy += atDest.energy;

this.grid.set(dest , null);

return true;

};

Eating another critter also involves providing a valid destination square. This
time, the destination must not be empty and must contain something with
energy, like a critter (but not a wall—walls are not edible). If so, the energy
from the eaten is transferred to the eater, and the victim is removed from the
grid.

And finally, we allow our critters to reproduce.

actionTypes.reproduce = function(critter , vector , action) {

var baby = elementFromChar(this.legend ,

critter.originChar);

var dest = this.checkDestination(action , vector);

if (dest == null ||

critter.energy <= 2 * baby.energy ||

this.grid.get(dest) != null)

return false;

critter.energy -= 2 * baby.energy;

this.grid.set(dest , baby);

return true;

};

Reproducing costs twice the energy level of the newborn critter. So we first
create a (hypothetical) baby using elementFromChar on the critter’s own origin
character. Once we have a baby, we can find its energy level and test whether
the parent has enough energy to successfully bring it into the world. We also
require a valid (and empty) destination.

If everything is okay, the baby is put onto the grid (it is now no longer
hypothetical), and the energy is spent.

Populating the new world
We now have a framework to simulate these more lifelike creatures. We could
put the critters from the old world into it, but they would just die since they
don’t have an energy property. So let’s make new ones. First we’ll write a
plant, which is a rather simple life-form.

function Plant() {

this.energy = 3 + Math.random () * 4;

129

}

Plant.prototype.act = function(view) {

if (this.energy > 15) {

var space = view.find(" ");

if (space)

return {type: "reproduce", direction: space};

}

if (this.energy < 20)

return {type: "grow "};

};

Plants start with an energy level between 3 and 7, randomized so that they
don’t all reproduce in the same turn. When a plant reaches 15 energy points
and there is empty space nearby, it reproduces into that empty space. If a
plant can’t reproduce, it simply grows until it reaches energy level 20.

We now define a plant eater.

function PlantEater () {

this.energy = 20;

}

PlantEater.prototype.act = function(view) {

var space = view.find(" ");

if (this.energy > 60 && space)

return {type: "reproduce", direction: space};

var plant = view.find ("*");

if (plant)

return {type: "eat", direction: plant};

if (space)

return {type: "move", direction: space};

};

We’ll use the * character for plants, so that’s what this creature will look for
when it searches for food.

Bringing it to life
And that gives us enough elements to try our new world. Imagine the following
map as a grassy valley with a herd of herbivores in it, some boulders, and lush
plant life everywhere.

var valley = new LifelikeWorld(

["############################" ,

"##### ######" ,

"## *** **##" ,

130

"# *##** ** O *##",

"# *** O ##** *#",

"# O ##*** #",

"# ##** #",

"# O #* #",

"#* #** O #",

"#*** ##** O **#",

"##**** ###*** *###" ,

"############################"] ,

{"#": Wall ,

"O": PlantEater ,

"*": Plant}

);

Let’s see what happens if we run this. These snapshots illustrate a typical run
of this world.

############################ ############################

**

*** O *## ## ** * O

** *## # **##

** ##* *# # ** O ##O

##* # # *O * * ##

O # # *** ## O

#* O # #** #***

#* #** O # #** O #**** #

#* O O ##* **# #*** ##*** O #

##* ###* ### ##** ###** O ###

############################ ############################

############################ ############################

#####O O ###### ##### O ######

##

##O ## # ## O

O O *## # # ##

O O O **## O # # ##

**## O # # O ## *

*** * # # # O

O***** O # # O # O

##****** # # ## O O

###****** ### ## ### O

############################ ############################

############################ ############################

######

** *

131

##****

##* * # # ##*****

O ## * # # ##******

** **

#

#

###

############################ ############################

Most of the time, the plants multiply and expand quite quickly, but then the
abundance of food causes a population explosion of the herbivores, who proceed
to wipe out all or nearly all of the plants, resulting in a mass starvation of the
critters. Sometimes, the ecosystem recovers and another cycle starts. At other
times, one of the species dies out completely. If it’s the herbivores, the whole
space will fill with plants. If it’s the plants, the remaining critters starve, and
the valley becomes a desolate wasteland. Ah, the cruelty of nature.

Exercises
Artificial stupidity
Having the inhabitants of our world go extinct after a few minutes is kind of
depressing. To deal with this, we could try to create a smarter plant eater.

There are several obvious problems with our herbivores. First, they are
terribly greedy, stuffing themselves with every plant they see until they have
wiped out the local plant life. Second, their randomized movement (recall
that the view.find method returns a random direction when multiple directions
match) causes them to stumble around ineffectively and starve if there don’t
happen to be any plants nearby. And finally, they breed very fast, which makes
the cycles between abundance and famine quite intense.

Write a new critter type that tries to address one or more of these points and
substitute it for the old PlantEater type in the valley world. See how it fares.
Tweak it some more if necessary.

Predators
Any serious ecosystem has a food chain longer than a single link. Write another
critter that survives by eating the herbivore critter. You’ll notice that stability
is even harder to achieve now that there are cycles at multiple levels. Try to
find a strategy to make the ecosystem run smoothly for at least a little while.

132

One thing that will help is to make the world bigger. This way, local popu-
lation booms or busts are less likely to wipe out a species entirely, and there is
space for the relatively large prey population needed to sustain a small predator
population.

133

“Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”
—Brian Kernighan and P.J. Plauger, The Elements of Programming

Style

8 Bugs and Error Handling
A program is crystallized thought. Sometimes those thoughts are confused.
Other times, mistakes are introduced when converting thought into code. Ei-
ther way, the result is a flawed program.

Flaws in a program are usually called bugs. Bugs can be programmer errors
or problems in other systems that the program interacts with. Some bugs are
immediately apparent, while others are subtle and might remain hidden in a
system for years.

Often, problems surface only when a program encounters a situation that
the programmer didn’t originally consider. Sometimes such situations are un-
avoidable. When the user is asked to input their age and types orange, this
puts our program in a difficult position. The situation has to be anticipated
and handled somehow.

Programmer mistakes
When it comes to programmer mistakes, our aim is simple. We want to find
them and fix them. Such mistakes can range from simple typos that cause the
computer to complain as soon as it lays eyes on our program to subtle mis-
takes in our understanding of the way the program operates, causing incorrect
outcomes only in specific situations. Bugs of the latter type can take weeks to
diagnose.

The degree to which languages help you find such mistakes varies. Unsur-
prisingly, JavaScript is at the “hardly helps at all” end of that scale. Some
languages want to know the types of all your variables and expressions before
even running a program and will tell you right away when a type is used in an
inconsistent way. JavaScript considers types only when actually running the
program, and even then, it allows you to do some clearly nonsensical things
without complaint, such as x = true * "monkey".

There are some things that JavaScript does complain about, though. Writing
a program that is not syntactically valid will immediately trigger an error.
Other things, such as calling something that’s not a function or looking up a
property on an undefined value, will cause an error to be reported when the

134

program is running and encounters the nonsensical action.
But often, your nonsense computation will simply produce a NaN (not a num-

ber) or undefined value. And the program happily continues, convinced that
it’s doing something meaningful. The mistake will manifest itself only later, af-
ter the bogus value has traveled through several functions. It might not trigger
an error at all but silently cause the program’s output to be wrong. Finding
the source of such problems can be difficult.

The process of finding mistakes—bugs—in programs is called debugging.

Strict mode
JavaScript can be made a little more strict by enabling strict mode. This is
done by putting the string "use strict" at the top of a file or a function body.
Here’s an example:

function canYouSpotTheProblem () {

"use strict ";

for (counter = 0; counter < 10; counter ++)

console.log("Happy happy ");

}

canYouSpotTheProblem ();

// → ReferenceError: counter is not defined

Normally, when you forget to put var in front of your variable, as with counter

in the example, JavaScript quietly creates a global variable and uses that. In
strict mode, however, an error is reported instead. This is very helpful. It
should be noted, though, that this doesn’t work when the variable in question
already exists as a global variable, but only when assigning to it would have
created it.

Another change in strict mode is that the this binding holds the value
undefined in functions that are not called as methods. When making such a
call outside of strict mode, this refers to the global scope object. So if you
accidentally call a method or constructor incorrectly in strict mode, JavaScript
will produce an error as soon as it tries to read something from this, rather than
happily working with the global object, creating and reading global variables.

For example, consider the following code, which calls a constructor without
the new keyword so that its this will not refer to a newly constructed object:

function Person(name) { this.name = name; }

var ferdinand = Person (" Ferdinand "); // oops

console.log(name);

135

// → Ferdinand

So the bogus call to Person succeeded but returned an undefined value and
created the global variable name. In strict mode, the result is different.

"use strict ";

function Person(name) { this.name = name; }

// Oops , forgot ' new '

var ferdinand = Person (" Ferdinand ");

// → TypeError: Cannot set property ' name ' of undefined

We are immediately told that something is wrong. This is helpful.
Strict mode does a few more things. It disallows giving a function multiple

parameters with the same name and removes certain problematic language
features entirely (such as the with statement, which is so misguided it is not
further discussed in this book).

In short, putting a "use strict" at the top of your program rarely hurts and
might help you spot a problem.

Testing
If the language is not going to do much to help us find mistakes, we’ll have to
find them the hard way: by running the program and seeing whether it does
the right thing.

Doing this by hand, again and again, is a sure way to drive yourself insane.
Fortunately, it is often possible to write a second program that automates
testing your actual program.

As an example, we once again use the Vector type.

function Vector(x, y) {

this.x = x;

this.y = y;

}

Vector.prototype.plus = function(other) {

return new Vector(this.x + other.x, this.y + other.y);

};

We will write a program to check that our implementation of Vector works as
intended. Then, every time we change the implementation, we follow up by
running the test program so that we can be reasonably confident that we didn’t
break anything. When we add extra functionality (for example, a new method)
to the Vector type, we also add tests for the new feature.

136

function testVector () {

var p1 = new Vector (10, 20);

var p2 = new Vector(-10, 5);

var p3 = p1.plus(p2);

if (p1.x !== 10) return "fail: x property ";

if (p1.y !== 20) return "fail: y property ";

if (p2.x !== -10) return "fail: negative x property ";

if (p3.x !== 0) return "fail: x from plus";

if (p3.y !== 25) return "fail: y from plus";

return "everything ok";

}

console.log(testVector ());

// → everything ok

Writing tests like this tends to produce rather repetitive, awkward code. For-
tunately, there exist pieces of software that help you build and run collections
of tests (test suites) by providing a language (in the form of functions and
methods) suited to expressing tests and by outputting informative information
when a test fails. These are called testing frameworks.

Debugging
Once you notice that there is something wrong with your program because it
misbehaves or produces errors, the next step is to figure out what the problem
is.

Sometimes it is obvious. The error message will point at a specific line of
your program, and if you look at the error description and that line of code,
you can often see the problem.

But not always. Sometimes the line that triggered the problem is simply the
first place where a bogus value produced elsewhere gets used in an invalid way.
And sometimes there is no error message at all—just an invalid result. If you
have been solving the exercises in the earlier chapters, you will probably have
already experienced such situations.

The following example program tries to convert a whole number to a string
in any base (decimal, binary, and so on) by repeatedly picking out the last digit
and then dividing the number to get rid of this digit. But the insane output
that it currently produces suggests that it has a bug.

function numberToString(n, base) {

var result = "", sign = "";

if (n < 0) {

137

sign = "-";

n = -n;

}

do {

result = String(n % base) + result;

n /= base;

} while (n > 0);

return sign + result;

}

console.log(numberToString (13, 10));

// → 1.5e -3231.3e -3221.3e -3211.3e -3201.3e -3191.3e...-3181.3

Even if you see the problem already, pretend for a moment that you don’t. We
know that our program is malfunctioning, and we want to find out why.

This is where you must resist the urge to start making random changes to the
code. Instead, think. Analyze what is happening and come up with a theory
of why it might be happening. Then, make additional observations to test this
theory—or, if you don’t yet have a theory, make additional observations that
might help you come up with one.

Putting a few strategic console.log calls into the program is a good way to
get additional information about what the program is doing. In this case, we
want n to take the values 13, 1, and then 0. Let’s write out its value at the start
of the loop.

13

1.3

0.13

0.013...

1.5e-323

Right. Dividing 13 by 10 does not produce a whole number. Instead of n /=

base, what we actually want is n = Math.floor(n / base) so that the number is
properly “shifted” to the right.

An alternative to using console.log is to use the debugger capabilities of your
browser. Modern browsers come with the ability to set a breakpoint on a specific
line of your code. This will cause the execution of the program to pause every
time the line with the breakpoint is reached and allow you to inspect the values
of variables at that point. I won’t go into details here since debuggers differ
from browser to browser, but look in your browser’s developer tools and search
the Web for more information. Another way to set a breakpoint is to include a
debugger statement (consisting of simply that keyword) in your program. If the
developer tools of your browser are active, the program will pause whenever it

138

reaches that statement, and you will be able to inspect its state.

Error propagation
Not all problems can be prevented by the programmer, unfortunately. If your
program communicates with the outside world in any way, there is a chance
that the input it gets will be invalid or that other systems that it tries to talk
to are broken or unreachable.

Simple programs, or programs that run only under your supervision, can
afford to just give up when such a problem occurs. You’ll look into the problem
and try again. “Real” applications, on the other hand, are expected to not
simply crash. Sometimes the right thing to do is take the bad input in stride
and continue running. In other cases, it is better to report to the user what
went wrong and then give up. But in either situation, the program has to
actively do something in response to the problem.

Say you have a function promptInteger that asks the user for a whole number
and returns it. What should it return if the user inputs orange?

One option is to make it return a special value. Common choices for such
values are null and undefined.

function promptNumber(question) {

var result = Number(prompt(question , ""));

if (isNaN(result)) return null;

else return result;

}

console.log(promptNumber ("How many trees do you see?"));

This is a sound strategy. Now any code that calls promptNumber must check
whether an actual number was read and, failing that, must somehow recover—
maybe by asking again or by filling in a default value. Or it could again return
a special value to its caller to indicate that it failed to do what it was asked.

In many situations, mostly when errors are common and the caller should
be explicitly taking them into account, returning a special value is a perfectly
fine way to indicate an error. It does, however, have its downsides. First, what
if the function can already return every possible kind of value? For such a
function, it is hard to find a special value that can be distinguished from a
valid result.

The second issue with returning special values is that it can lead to some
very cluttered code. If a piece of code calls promptNumber 10 times, it has to check
10 times whether null was returned. And if its response to finding null is to

139

simply return null itself, the caller will in turn have to check for it, and so on.

Exceptions
When a function cannot proceed normally, what we would like to do is just
stop what we are doing and immediately jump back to a place that knows how
to handle the problem. This is what exception handling does.

Exceptions are a mechanism that make it possible for code that runs into
a problem to raise (or throw) an exception, which is simply a value. Raising
an exception somewhat resembles a super-charged return from a function: it
jumps out of not just the current function but also out of its callers, all the
way down to the first call that started the current execution. This is called
unwinding the stack. You may remember the stack of function calls that was
mentioned in Chapter 3. An exception zooms down this stack, throwing away
all the call contexts it encounters.

If exceptions always zoomed right down to the bottom of the stack, they
would not be of much use. They would just provide a novel way to blow
up your program. Their power lies in the fact that you can set “obstacles”
along the stack to catch the exception as it is zooming down. Then you can
do something with it, after which the program continues running at the point
where the exception was caught.

Here’s an example:

function promptDirection(question) {

var result = prompt(question , "");

if (result.toLowerCase () == "left") return "L";

if (result.toLowerCase () == "right") return "R";

throw new Error(" Invalid direction: " + result);

}

function look() {

if (promptDirection ("Which way?") == "L")

return "a house";

else

return "two angry bears ";

}

try {

console.log("You see", look());

} catch (error) {

console.log(" Something went wrong: " + error);

}

140

The throw keyword is used to raise an exception. Catching one is done by
wrapping a piece of code in a try block, followed by the keyword catch. When
the code in the try block causes an exception to be raised, the catch block is
evaluated. The variable name (in parentheses) after catch will be bound to
the exception value. After the catch block finishes—or if the try block finishes
without problems—control proceeds beneath the entire try/catch statement.

In this case, we used the Error constructor to create our exception value.
This is a standard JavaScript constructor that creates an object with a message

property. In modern JavaScript environments, instances of this constructor
also gather information about the call stack that existed when the exception
was created, a so-called stack trace. This information is stored in the stack

property and can be helpful when trying to debug a problem: it tells us the
precise function where the problem occurred and which other functions led up
to the call that failed.

Note that the function look completely ignores the possibility that promptDirection
might go wrong. This is the big advantage of exceptions—error-handling code
is necessary only at the point where the error occurs and at the point where it
is handled. The functions in between can forget all about it.

Well, almost…

Cleaning up after exceptions
Consider the following situation: a function, withContext, wants to make sure
that, during its execution, the top-level variable context holds a specific context
value. After it finishes, it restores this variable to its old value.

var context = null;

function withContext(newContext , body) {

var oldContext = context;

context = newContext;

var result = body();

context = oldContext;

return result;

}

What if body raises an exception? In that case, the call to withContext will be
thrown off the stack by the exception, and context will never be set back to its
old value.

There is one more feature that try statements have. They may be followed
by a finally block either instead of or in addition to a catch block. A finally

141

block means “No matter what happens, run this code after trying to run the
code in the try block”. If a function has to clean something up, the cleanup
code should usually be put into a finally block.

function withContext(newContext , body) {

var oldContext = context;

context = newContext;

try {

return body();

} finally {

context = oldContext;

}

}

Note that we no longer have to store the result of body (which we want to return)
in a variable. Even if we return directly from the try block, the finally block
will be run. Now we can do this and be safe:

try {

withContext (5, function () {

if (context < 10)

throw new Error("Not enough context !");

});

} catch (e) {

console.log(" Ignoring: " + e);

}

// → Ignoring: Error: Not enough context!

console.log(context);

// → null

Even though the function called from withContext exploded, withContext itself still
properly cleaned up the context variable.

Selective catching
When an exception makes it all the way to the bottom of the stack without
being caught, it gets handled by the environment. What this means differs
between environments. In browsers, a description of the error typically gets
written to the JavaScript console (reachable through the browser’s Tools or
Developer menu).

For programmer mistakes or problems that the program cannot possibly
handle, just letting the error go through is often okay. An unhandled exception
is a reasonable way to signal a broken program, and the JavaScript console will,

142

on modern browsers, provide you with some information about which function
calls were on the stack when the problem occurred.

For problems that are expected to happen during routine use, crashing with
an unhandled exception is not a very friendly response.

Invalid uses of the language, such as referencing a nonexistent variable, look-
ing up a property on null, or calling something that’s not a function, will also
result in exceptions being raised. Such exceptions can be caught just like your
own exceptions.

When a catch body is entered, all we know is that something in our try body
caused an exception. But we don’t know what, or which exception it caused.

JavaScript (in a rather glaring omission) doesn’t provide direct support for
selectively catching exceptions: either you catch them all or you don’t catch
any. This makes it very easy to assume that the exception you get is the one
you were thinking about when you wrote the catch block.

But it might not be. Some other assumption might be violated, or you
might have introduced a bug somewhere that is causing an exception. Here
is an example, which attempts to keep on calling promptDirection until it gets a
valid answer:

for (;;) {

try {

var dir = promtDirection ("Where ?"); // ← typo!

console.log("You chose ", dir);

break;

} catch (e) {

console.log("Not a valid direction. Try again .");

}

}

The for (;;) construct is a way to intentionally create a loop that doesn’t
terminate on its own. We break out of the loop only when a valid direction
is given. But we misspelled promptDirection, which will result in an “undefined
variable” error. Because the catch block completely ignores its exception value
(e), assuming it knows what the problem is, it wrongly treats the variable error
as indicating bad input. Not only does this cause an infinite loop, but it also
“buries” the useful error message about the misspelled variable.

As a general rule, don’t blanket-catch exceptions unless it is for the purpose
of “routing” them somewhere—for example, over the network to tell another
system that our program crashed. And even then, think carefully about how
you might be hiding information.

So we want to catch a specific kind of exception. We can do this by checking
in the catch block whether the exception we got is the one we are interested in

143

and by rethrowing it otherwise. But how do we recognize an exception?
Of course, we could match its message property against the error message

we happen to expect. But that’s a shaky way to write code—we’d be using
information that’s intended for human consumption (the message) to make a
programmatic decision. As soon as someone changes (or translates) the mes-
sage, the code will stop working.

Rather, let’s define a new type of error and use instanceof to identify it.

function InputError(message) {

this.message = message;

this.stack = (new Error()).stack;

}

InputError.prototype = Object.create(Error.prototype);

InputError.prototype.name = "InputError ";

The prototype is made to derive from Error.prototype so that instanceof Error

will also return true for InputError objects. It’s also given a name property since
the standard error types (Error, SyntaxError, ReferenceError, and so on) also have
such a property.

The assignment to the stack property tries to give this object a somewhat
useful stack trace, on platforms that support it, by creating a regular error
object and then using that object’s stack property as its own.

Now promptDirection can throw such an error.

function promptDirection(question) {

var result = prompt(question , "");

if (result.toLowerCase () == "left") return "L";

if (result.toLowerCase () == "right") return "R";

throw new InputError (" Invalid direction: " + result);

}

And the loop can catch it more carefully.

for (;;) {

try {

var dir = promptDirection ("Where ?");

console.log("You chose ", dir);

break;

} catch (e) {

if (e instanceof InputError)

console.log("Not a valid direction. Try again .");

else

throw e;

}

}

144

This will catch only instances of InputError and let unrelated exceptions through.
If you reintroduce the typo, the undefined variable error will be properly re-
ported.

Assertions
Assertions are a tool to do basic sanity checking for programmer errors. Con-
sider this helper function, assert:

function AssertionFailed(message) {

this.message = message;

}

AssertionFailed.prototype = Object.create(Error.prototype);

function assert(test , message) {

if (!test)

throw new AssertionFailed(message);

}

function lastElement(array) {

assert(array.length > 0, "empty array in lastElement ");

return array[array.length - 1];

}

This provides a compact way to enforce expectations, helpfully blowing up the
program if the stated condition does not hold. For instance, the lastElement

function, which fetches the last element from an array, would return undefined

on empty arrays if the assertion was omitted. Fetching the last element from an
empty array does not make much sense, so it is almost certainly a programmer
error to do so.

Assertions are a way to make sure mistakes cause failures at the point of
the mistake, rather than silently producing nonsense values that may go on to
cause trouble in an unrelated part of the system.

Summary
Mistakes and bad input are facts of life. Bugs in programs need to be found
and fixed. They can become easier to notice by having automated test suites
and adding assertions to your programs.

Problems caused by factors outside the program’s control should usually
be handled gracefully. Sometimes, when the problem can be handled locally,

145

special return values are a sane way to track them. Otherwise, exceptions are
preferable.

Throwing an exception causes the call stack to be unwound until the next
enclosing try/catch block or until the bottom of the stack. The exception value
will be given to the catch block that catches it, which should verify that it is
actually the expected kind of exception and then do something with it. To deal
with the unpredictable control flow caused by exceptions, finally blocks can be
used to ensure a piece of code is always run when a block finishes.

Exercises
Retry
Say you have a function primitiveMultiply that, in 50 percent of cases, multi-
plies two numbers, and in the other 50 percent, raises an exception of type
MultiplicatorUnitFailure. Write a function that wraps this clunky function and
just keeps trying until a call succeeds, after which it returns the result.

Make sure you handle only the exceptions you are trying to handle.

The locked box
Consider the following (rather contrived) object:

var box = {

locked: true ,

unlock: function () { this.locked = false; },

lock: function () { this.locked = true; },

_content: [],

get content () {

if (this.locked) throw new Error(" Locked !");

return this._content;

}

};

It is a box with a lock. Inside is an array, but you can get at it only when the
box is unlocked. Directly accessing the _content property is not allowed.

Write a function called withBoxUnlocked that takes a function value as argu-
ment, unlocks the box, runs the function, and then ensures that the box is
locked again before returning, regardless of whether the argument function
returned normally or threw an exception.

146

“Some people, when confronted with a problem, think ‘I know, I’ll
use regular expressions.’ Now they have two problems.”

—Jamie Zawinski

9 Regular Expressions
Programming tools and techniques survive and spread in a chaotic, evolutionary
way. It’s not always the pretty or brilliant ones that win but rather the ones that
function well enough within the right niche—for example, by being integrated
with another successful piece of technology.

In this chapter, I will discuss one such tool, regular expressions. Regular
expressions are a way to describe patterns in string data. They form a small,
separate language that is part of JavaScript and many other languages and
tools.

Regular expressions are both terribly awkward and extremely useful. Their
syntax is cryptic, and the programming interface JavaScript provides for them
is clumsy. But they are a powerful tool for inspecting and processing strings.
Properly understanding regular expressions will make you a more effective pro-
grammer.

Creating a regular expression
A regular expression is a type of object. It can either be constructed with
the RegExp constructor or written as a literal value by enclosing the pattern in
forward slash (/) characters.

var re1 = new RegExp ("abc");

var re2 = /abc/;

Both of these regular expression objects represent the same pattern: an a
character followed by a b followed by a c.

When using the RegExp constructor, the pattern is written as a normal string,
so the usual rules apply for backslashes.

The second notation, where the pattern appears between slash characters,
treats backslashes somewhat differently. First, since a forward slash ends the
pattern, we need to put a backslash before any forward slash that we want
to be part of the pattern. In addition, backslashes that aren’t part of special
character codes (like \n) will be preserved, rather than ignored as they are
in strings, and change the meaning of the pattern. Some characters, such as

147

question marks and plus signs, have special meanings in regular expressions and
must be preceded by a backslash if they are meant to represent the character
itself.

var eighteenPlus = /eighteen \+/;

Knowing precisely what characters to backslash-escape when writing regular
expressions requires you to know every character with a special meaning. For
the time being, this may not be realistic, so when in doubt, just put a backslash
before any character that is not a letter, number, or whitespace.

Testing for matches
Regular expression objects have a number of methods. The simplest one is
test. If you pass it a string, it will return a Boolean telling you whether the
string contains a match of the pattern in the expression.

console.log(/abc/.test("abcde "));

// → true

console.log(/abc/.test("abxde "));

// → false

A regular expression consisting of only nonspecial characters simply represents
that sequence of characters. If abc occurs anywhere in the string we are testing
against (not just at the start), test will return true.

Matching a set of characters
Finding out whether a string contains abc could just as well be done with a call
to indexOf. Regular expressions allow us to go beyond that and express more
complicated patterns.

Say we want to match any number. In a regular expression, putting a set
of characters between square brackets makes that part of the expression match
any of the characters between the brackets.

Both of the following expressions match all strings that contain a digit:

console.log (/[0123456789]/. test("in 1992"));

// → true

console.log (/[0 -9]/. test("in 1992"));

// → true

Within square brackets, a dash (-) between two characters can be used to indi-

148

cate a range of characters, where the ordering is determined by the character’s
Unicode number. Characters 0 to 9 sit right next to each other in this ordering
(codes 48 to 57), so [0-9] covers all of them and matches any digit.

There are a number of common character groups that have their own built-in
shortcuts. Digits are one of them: \d means the same thing as [0-9].
\d Any digit character
\w An alphanumeric character (“word character”)
\s Any whitespace character (space, tab, newline, and similar)
\D A character that is not a digit
\W A nonalphanumeric character
\S A nonwhitespace character
. Any character except for newline
So you could match a date and time format like 30-01-2003 15:20 with the
following expression:

var dateTime = /\d\d-\d\d-\d\d\d\d \d\d:\d\d/;

console.log(dateTime.test ("30 -01 -2003 15:20"));

// → true

console.log(dateTime.test ("30-jan -2003 15:20"));

// → false

That looks completely awful, doesn’t it? It has way too many backslashes,
producing background noise that makes it hard to spot the actual pattern
expressed. We’ll see a slightly improved version of this expression later.

These backslash codes can also be used inside square brackets. For example,
[\d.] means any digit or a period character. But note that the period itself,
when used between square brackets, loses its special meaning. The same goes
for other special characters, such as +.

To invert a set of characters—that is, to express that you want to match any
character except the ones in the set—you can write a caret (^) character after
the opening bracket.

var notBinary = /[^01]/;

console.log(notBinary.test ("1100100010100110"));

// → false

console.log(notBinary.test ("1100100010200110"));

// → true

149

Repeating parts of a pattern
We now know how to match a single digit. What if we want to match a whole
number—a sequence of one or more digits?

When you put a plus sign (+) after something in a regular expression, it indi-
cates that the element may be repeated more than once. Thus, /\d+/ matches
one or more digit characters.

console.log (/ '\d+ '/. test (" '123 '"));

// → true

console.log (/ '\d+ '/. test (" ' '"));

// → false

console.log (/ '\d* '/. test (" '123 '"));

// → true

console.log (/ '\d* '/. test (" ' '"));

// → true

The star (*) has a similar meaning but also allows the pattern to match zero
times. Something with a star after it never prevents a pattern from matching—
it’ll just match zero instances if it can’t find any suitable text to match.

A question mark makes a part of a pattern “optional”, meaning it may occur
zero or one time. In the following example, the u character is allowed to occur,
but the pattern also matches when it is missing.

var neighbor = /neighbou?r/;

console.log(neighbor.test(" neighbour "));

// → true

console.log(neighbor.test(" neighbor "));

// → true

To indicate that a pattern should occur a precise number of times, use curly
braces. Putting {4} after an element, for example, requires it to occur exactly
four times. It is also possible to specify a range this way: {2,4} means the
element must occur at least twice and at most four times.

Here is another version of the date and time pattern that allows both single-
and double-digit days, months, and hours. It is also slightly more readable.

var dateTime = /\d{1,2}-\d{1,2}-\d{4} \d{1 ,2}:\d{2}/;

console.log(dateTime.test ("30 -1 -2003 8:45"));

// → true

You can also specify open-ended ranges when using curly braces by omitting
the number after the comma. So {5,} means five or more times.

150

Grouping subexpressions
To use an operator like * or + on more than one element at a time, you can
use parentheses. A part of a regular expression that is enclosed in parentheses
counts as a single element as far as the operators following it are concerned.

var cartoonCrying = /boo+(hoo+)+/i;

console.log(cartoonCrying.test(" Boohoooohoohooo "));

// → true

The first and second + characters apply only to the second o in boo and hoo,
respectively. The third + applies to the whole group (hoo+), matching one or
more sequences like that.

The i at the end of the expression in the previous example makes this regular
expression case insensitive, allowing it to match the uppercase B in the input
string, even though the pattern is itself all lowercase.

Matches and groups
The test method is the absolute simplest way to match a regular expression. It
tells you only whether it matched and nothing else. Regular expressions also
have an exec (execute) method that will return null if no match was found and
return an object with information about the match otherwise.

var match = /\d+/. exec("one two 100");

console.log(match);

// → ["100"]

console.log(match.index);

// → 8

An object returned from exec has an index property that tells us where in the
string the successful match begins. Other than that, the object looks like
(and in fact is) an array of strings, whose first element is the string that was
matched—in the previous example, this is the sequence of digits that we were
looking for.

String values have a match method that behaves similarly.

console.log("one two 100". match (/\d+/));

// → ["100"]

When the regular expression contains subexpressions grouped with parentheses,
the text that matched those groups will also show up in the array. The whole
match is always the first element. The next element is the part matched by the

151

first group (the one whose opening parenthesis comes first in the expression),
then the second group, and so on.

var quotedText = / '([^ ']*) '/;

console.log(quotedText.exec("she said ' hello '"));

// → [" ' hello '" , "hello"]

When a group does not end up being matched at all (for example, when fol-
lowed by a question mark), its position in the output array will hold undefined.
Similarly, when a group is matched multiple times, only the last match ends
up in the array.

console.log(/bad(ly)?/. exec("bad"));

// → ["bad", undefined]

console.log (/(\d)+/. exec ("123"));

// → ["123" , "3"]

Groups can be useful for extracting parts of a string. If we don’t just want
to verify whether a string contains a date but also extract it and construct an
object that represents it, we can wrap parentheses around the digit patterns
and directly pick the date out of the result of exec.

But first, a brief detour, in which we discuss the preferred way to store date
and time values in JavaScript.

The date type
JavaScript has a standard object type for representing dates—or rather, points
in time. It is called Date. If you simply create a date object using new, you get
the current date and time.

console.log(new Date());

// → Wed Dec 04 2013 14:24:57 GMT +0100 (CET)

You can also create an object for a specific time.

console.log(new Date (2009, 11, 9));

// → Wed Dec 09 2009 00:00:00 GMT +0100 (CET)

console.log(new Date (2009, 11, 9, 12, 59, 59, 999));

// → Wed Dec 09 2009 12:59:59 GMT +0100 (CET)

JavaScript uses a convention where month numbers start at zero (so December
is 11), yet day numbers start at one. This is confusing and silly. Be careful.

The last four arguments (hours, minutes, seconds, and milliseconds) are op-
tional and taken to be zero when not given.

152

Timestamps are stored as the number of milliseconds since the start of 1970,
using negative numbers for times before 1970 (following a convention set by
“Unix time”, which was invented around that time). The getTime method on a
date object returns this number. It is big, as you can imagine.

console.log(new Date (2013, 11, 19).getTime ());

// → 1387407600000

console.log(new Date (1387407600000));

// → Thu Dec 19 2013 00:00:00 GMT +0100 (CET)

If you give the Date constructor a single argument, that argument is treated
as such a millisecond count. You can get the current millisecond count by
creating a new Date object and calling getTime on it but also by calling the
Date.now function.

Date objects provide methods like getFullYear, getMonth, getDate, getHours, getMinutes
, and getSeconds to extract their components. There’s also getYear, which gives
you a rather useless two-digit year value (such as 93 or 14).

Putting parentheses around the parts of the expression that we are interested
in, we can now easily create a date object from a string.

function findDate(string) {

var dateTime = /(\d{1,2}) -(\d{1,2}) -(\d{4})/;

var match = dateTime.exec(string);

return new Date(Number(match [3]),

Number(match [2]) - 1,

Number(match [1]));

}

console.log(findDate ("30 -1 -2003"));

// → Thu Jan 30 2003 00:00:00 GMT +0100 (CET)

Word and string boundaries
Unfortunately, findDate will also happily extract the nonsensical date 00-1-3000
from the string "100-1-30000". A match may happen anywhere in the string, so
in this case, it’ll just start at the second character and end at the second-to-last
character.

If we want to enforce that the match must span the whole string, we can add
the markers ^ and $. The caret matches the start of the input string, while the
dollar sign matches the end. So, /^\d+$/ matches a string consisting entirely
of one or more digits, /^!/ matches any string that starts with an exclamation
mark, and /x^/ does not match any string (there cannot be an x before the

153

start of the string).
If, on the other hand, we just want to make sure the date starts and ends

on a word boundary, we can use the marker \b. A word boundary can be the
start or end of the string or any point in the string that has a word character
(as in \w) on one side and a nonword character on the other.

console.log(/cat/.test(" concatenate "));

// → true

console.log(/\ bcat\b/.test(" concatenate "));

// → false

Note that a boundary marker doesn’t represent an actual character. It just
enforces that the regular expression matches only when a certain condition
holds at the place where it appears in the pattern.

Choice patterns
Say we want to know whether a piece of text contains not only a number but a
number followed by one of the words pig, cow, or chicken, or any of their plural
forms.

We could write three regular expressions and test them in turn, but there is
a nicer way. The pipe character (|) denotes a choice between the pattern to its
left and the pattern to its right. So I can say this:

var animalCount = /\b\d+ (pig|cow|chicken)s?\b/;

console.log(animalCount.test ("15 pigs"));

// → true

console.log(animalCount.test ("15 pigchickens "));

// → false

Parentheses can be used to limit the part of the pattern that the pipe operator
applies to, and you can put multiple such operators next to each other to
express a choice between more than two patterns.

The mechanics of matching
Regular expressions can be thought of as flow diagrams. This is the diagram
for the livestock expression in the previous example:

154

" "boundary boundary

Group #1

"chicken"

"cow"

"pig"

digit "s"

Our expression matches a string if we can find a path from the left side of the
diagram to the right side. We keep a current position in the string, and every
time we move through a box, we verify that the part of the string after our
current position matches that box.

So if we try to match "the 3 pigs" with our regular expression, our progress
through the flow chart would look like this:

• At position 4, there is a word boundary, so we can move past the first
box.

• Still at position 4, we find a digit, so we can also move past the second
box.

• At position 5, one path loops back to before the second (digit) box,
while the other moves forward through the box that holds a single space
character. There is a space here, not a digit, so we must take the second
path.

• We are now at position 6 (the start of “pigs”) and at the three-way
branch in the diagram. We don’t see “cow” or “chicken” here, but we do
see “pig”, so we take that branch.

• At position 9, after the three-way branch, one path skips the s box and
goes straight to the final word boundary, while the other path matches an
s. There is an s character here, not a word boundary, so we go through
the s box.

• We’re at position 10 (the end of the string) and can match only a word
boundary. The end of a string counts as a word boundary, so we go
through the last box and have successfully matched this string.

Conceptually, a regular expression engine looks for a match in a string as
follows: it starts at the start of the string and tries a match there. In this case,
there is a word boundary there, so it’d get past the first box—but there is no

155

digit, so it’d fail at the second box. Then it moves on to the second character
in the string and tries to begin a new match there… and so on, until it finds
a match or reaches the end of the string and decides that there really is no
match.

Backtracking
The regular expression /\b([01]+b|\d+|[\da-f]+h)\b/ matches either a binary num-
ber followed by a b, a regular decimal number with no suffix character, or a
hexadecimal number (that is, base 16, with the letters a to f standing for the
digits 10 to 15) followed by an h. This is the corresponding diagram:

boundary

Group #1

One of:

“0”

“1”
“b”

digit

One of:

digit

-“a” “f”
“h”

boundary

When matching this expression, it will often happen that the top (binary)
branch is entered even though the input does not actually contain a binary
number. When matching the string "103", for example, it becomes clear only at
the 3 that we are in the wrong branch. The string does match the expression,
just not the branch we are currently in.

So the matcher backtracks. When entering a branch, it remembers its current
position (in this case, at the start of the string, just past the first boundary box
in the diagram) so that it can go back and try another branch if the current
one does not work out. For the string "103", after encountering the 3 character,

156

it will start trying the branch for decimal numbers. This one matches, so a
match is reported after all.

The matcher stops as soon as it finds a full match. This means that if
multiple branches could potentially match a string, only the first one (ordered
by where the branches appear in the regular expression) is used.

Backtracking also happens for repetition operators like + and *. If you match
/^.*x/ against "abcxe", the .* part will first try to consume the whole string. The
engine will then realize that it needs an x to match the pattern. Since there is
no x past the end of the string, the star operator tries to match one character
less. But the matcher doesn’t find an x after abcx either, so it backtracks again,
matching the star operator to just abc. Now it finds an x where it needs it and
reports a successful match from positions 0 to 4.

It is possible to write regular expressions that will do a lot of backtracking.
This problem occurs when a pattern can match a piece of input in many dif-
ferent ways. For example, if we get confused while writing a binary-number
regular expression, we might accidentally write something like /([01]+)+b/.

"b"

Group #1

One of:

"1"

"0"

If that tries to match some long series of zeros and ones with no trailing b
character, the matcher will first go through the inner loop until it runs out of
digits. Then it notices there is no b, so it backtracks one position, goes through
the outer loop once, and gives up again, trying to backtrack out of the inner
loop once more. It will continue to try every possible route through these two
loops. This means the amount of work doubles with each additional character.
For even just a few dozen characters, the resulting match will take practically
forever.

157

The replace method
String values have a replace method, which can be used to replace part of the
string with another string.

console.log("papa". replace ("p", "m"));

// → mapa

The first argument can also be a regular expression, in which case the first
match of the regular expression is replaced. When a g option (for global) is
added to the regular expression, all matches in the string will be replaced, not
just the first.

console.log(" Borobudur ". replace (/[ou]/, "a"));

// → Barobudur

console.log(" Borobudur ". replace (/[ou]/g, "a"));

// → Barabadar

It would have been sensible if the choice between replacing one match or all
matches was made through an additional argument to replace or by providing a
different method, replaceAll. But for some unfortunate reason, the choice relies
on a property of the regular expression instead.

The real power of using regular expressions with replace comes from the
fact that we can refer back to matched groups in the replacement string. For
example, say we have a big string containing the names of people, one name
per line, in the format Lastname, Firstname. If we want to swap these names and
remove the comma to get a simple Firstname Lastname format, we can use the
following code:

console.log(

"Hopper , Grace\nMcCarthy , John\nRitchie , Dennis"

.replace (/([\w]+), ([\w]+)/g, "$2 $1"));

// → Grace Hopper

// John McCarthy

// Dennis Ritchie

The $1 and $2 in the replacement string refer to the parenthesized groups in
the pattern. $1 is replaced by the text that matched against the first group, $2
by the second, and so on, up to $9. The whole match can be referred to with
$&.

It is also possible to pass a function, rather than a string, as the second
argument to replace. For each replacement, the function will be called with
the matched groups (as well as the whole match) as arguments, and its return
value will be inserted into the new string.

158

Here’s a simple example:

var s = "the cia and fbi";

console.log(s.replace (/\b(fbi|cia)\b/g, function(str) {

return str.toUpperCase ();

}));

// → the CIA and FBI

And here’s a more interesting one:

var stock = "1 lemon , 2 cabbages , and 101 eggs";

function minusOne(match , amount , unit) {

amount = Number(amount) - 1;

if (amount == 1) // only one left , remove the 's '

unit = unit.slice(0, unit.length - 1);

else if (amount == 0)

amount = "no";

return amount + " " + unit;

}

console.log(stock.replace (/(\d+) (\w+)/g, minusOne));

// → no lemon , 1 cabbage , and 100 eggs

This takes a string, finds all occurrences of a number followed by an alphanu-
meric word, and returns a string wherein every such occurrence is decremented
by one.

The (\d+) group ends up as the amount argument to the function, and the (\w+)

group gets bound to unit. The function converts amount to a number—which
always works, since it matched \d+—and makes some adjustments in case there
is only one or zero left.

Greed
It isn’t hard to use replace to write a function that removes all comments from
a piece of JavaScript code. Here is a first attempt:

function stripComments(code) {

return code.replace (/\/\/.*|\/*[^]**\//g, "");

}

console.log(stripComments ("1 + /* 2 */3"));

// → 1 + 3

console.log(stripComments ("x = 10;// ten!"));

// → x = 10;

console.log(stripComments ("1 /* a */+/* b */ 1"));

// → 1 1

159

The part before the or operator simply matches two slash characters followed
by any number of non-newline characters. The part for multiline comments
is more involved. We use [^] (any character that is not in the empty set of
characters) as a way to match any character. We cannot just use a dot here
because block comments can continue on a new line, and dots do not match
the newline character.

But the output of the previous example appears to have gone wrong. Why?
The [^]* part of the expression, as I described in the section on backtracking,

will first match as much as it can. If that causes the next part of the pattern to
fail, the matcher moves back one character and tries again from there. In the
example, the matcher first tries to match the whole rest of the string and then
moves back from there. It will find an occurrence of */ after going back four
characters and match that. This is not what we wanted—the intention was to
match a single comment, not to go all the way to the end of the code and find
the end of the last block comment.

Because of this behavior, we say the repetition operators (+, *, ?, and {}) are
greedy, meaning they match as much as they can and backtrack from there. If
you put a question mark after them (+?, *?, ??, {}?), they become nongreedy and
start by matching as little as possible, matching more only when the remaining
pattern does not fit the smaller match.

And that is exactly what we want in this case. By having the star match
the smallest stretch of characters that brings us to a */, we consume one block
comment and nothing more.

function stripComments(code) {

return code.replace (/\/\/.*|\/*[^]*?*\//g, "");

}

console.log(stripComments ("1 /* a */+/* b */ 1"));

// → 1 + 1

A lot of bugs in regular expression programs can be traced to unintentionally
using a greedy operator where a nongreedy one would work better. When using
a repetition operator, consider the nongreedy variant first.

Dynamically creating RegExp objects
There are cases where you might not know the exact pattern you need to match
against when you are writing your code. Say you want to look for the user’s
name in a piece of text and enclose it in underscore characters to make it stand
out. Since you will know the name only once the program is actually running,
you can’t use the slash-based notation.

160

But you can build up a string and use the RegExp constructor on that. Here’s
an example:

var name = "harry";

var text = "Harry is a suspicious character .";

var regexp = new RegExp ("\\b(" + name + ")\\b", "gi");

console.log(text.replace(regexp , "_$1_"));

// → _Harry_ is a suspicious character.

When creating the \b boundary markers, we have to use two backslashes be-
cause we are writing them in a normal string, not a slash-enclosed regular ex-
pression. The second argument to the RegExp constructor contains the options
for the regular expression—in this case "gi" for global and case-insensitive.

But what if the name is "dea+hl[]rd" because our user is a nerdy teenager?
That would result in a nonsensical regular expression, which won’t actually
match the user’s name.

To work around this, we can add backslashes before any character that we
don’t trust. Adding backslashes before alphabetic characters is a bad idea
because things like \b and \n have a special meaning. But escaping everything
that’s not alphanumeric or whitespace is safe.

var name = "dea+hl[]rd";

var text = "This dea+hl[]rd guy is super annoying .";

var escaped = name.replace (/[^\w\s]/g, "\\$&");

var regexp = new RegExp ("\\b(" + escaped + ")\\b", "gi");

console.log(text.replace(regexp , "_$1_"));

// → This _dea+hl[]rd_ guy is super annoying.

The search method
The indexOf method on strings cannot be called with a regular expression. But
there is another method, search, which does expect a regular expression. Like
indexOf, it returns the first index on which the expression was found, or -1 when
it wasn’t found.

console.log(" word". search (/\S/));

// → 2

console.log(" ". search (/\S/));

// → -1

Unfortunately, there is no way to indicate that the match should start at a
given offset (like we can with the second argument to indexOf), which would

161

often be useful.

The lastIndex property
The exec method similarly does not provide a convenient way to start searching
from a given position in the string. But it does provide an inconvenient way.

Regular expression objects have properties. One such property is source,
which contains the string that expression was created from. Another property
is lastIndex, which controls, in some limited circumstances, where the next
match will start.

Those circumstances are that the regular expression must have the global (g)
option enabled, and the match must happen through the exec method. Again,
a more sane solution would have been to just allow an extra argument to be
passed to exec, but sanity is not a defining characteristic of JavaScript’s regular
expression interface.

var pattern = /y/g;

pattern.lastIndex = 3;

var match = pattern.exec("xyzzy");

console.log(match.index);

// → 4

console.log(pattern.lastIndex);

// → 5

If the match was successful, the call to exec automatically updates the lastIndex

property to point after the match. If no match was found, lastIndex is set back
to zero, which is also the value it has in a newly constructed regular expression
object.

When using a global regular expression value for multiple exec calls, these
automatic updates to the lastIndex property can cause problems. Your regular
expression might be accidentally starting at an index that was left over from a
previous call.

var digit = /\d/g;

console.log(digit.exec("here it is: 1"));

// → ["1"]

console.log(digit.exec("and now: 1"));

// → null

Another interesting effect of the global option is that it changes the way the
match method on strings works. When called with a global expression, instead
of returning an array similar to that returned by exec, match will find all matches

162

of the pattern in the string and return an array containing the matched strings.

console.log(" Banana ".match(/an/g));

// → ["an", "an"]

So be cautious with global regular expressions. The cases where they are
necessary—calls to replace and places where you want to explicitly use lastIndex

—are typically the only places where you want to use them.

Looping over matches
A common pattern is to scan through all occurrences of a pattern in a string,
in a way that gives us access to the match object in the loop body, by using
lastIndex and exec.

var input = "A string with 3 numbers in it... 42 and 88.";

var number = /\b(\d+)\b/g;

var match;

while (match = number.exec(input))

console.log("Found", match[1], "at", match.index);

// → Found 3 at 14

// Found 42 at 33

// Found 88 at 40

This makes use of the fact that the value of an assignment expression (=) is the
assigned value. So by using match = number.exec(input) as the condition in the
while statement, we perform the match at the start of each iteration, save its
result in a variable, and stop looping when no more matches are found.

Parsing an INI file
To conclude the chapter, we’ll look at a problem that calls for regular expres-
sions. Imagine we are writing a program to automatically harvest information
about our enemies from the Internet. (We will not actually write that program
here, just the part that reads the configuration file. Sorry to disappoint.) The
configuration file looks like this:

searchengine=http ://www.google.com/search?q=$1

spitefulness =9.7

; comments are preceded by a semicolon ...

; each section concerns an individual enemy

[larry]

163

fullname=Larry Doe

type=kindergarten bully

website=http ://www.geocities.com/CapeCanaveral /11451

[gargamel]

fullname=Gargamel

type=evil sorcerer

outputdir =/home/marijn/enemies/gargamel

The exact rules for this format (which is actually a widely used format, usually
called an INI file) are as follows:

• Blank lines and lines starting with semicolons are ignored.

• Lines wrapped in [and] start a new section.

• Lines containing an alphanumeric identifier followed by an = character
add a setting to the current section.

• Anything else is invalid.

Our task is to convert a string like this into an array of objects, each with a name

property and an array of settings. We’ll need one such object for each section
and one for the global settings at the top.

Since the format has to be processed line by line, splitting up the file into
separate lines is a good start. We used string.split("\n") to do this in Chapter 6.
Some operating systems, however, use not just a newline character to separate
lines but a carriage return character followed by a newline ("\r\n"). Given that
the split method also allows a regular expression as its argument, we can split
on a regular expression like /\r?\n/ to split in a way that allows both "\n" and
"\r\n" between lines.

function parseINI(string) {

// Start with an object to hold the top -level fields

var currentSection = {name: null , fields: []};

var categories = [currentSection];

string.split (/\r?\n/).forEach(function(line) {

var match;

if (/^\s*(;.*)?$/.test(line)) {

return;

} else if (match = line.match (/^\[(.*) \]$/)) {

currentSection = {name: match[1], fields: []};

categories.push(currentSection);

} else if (match = line.match (/^(\w+)=(.*)$/)) {

164

currentSection.fields.push({name: match[1],

value: match [2]});

} else {

throw new Error("Line '" + line + " ' is invalid .");

}

});

return categories;

}

This code goes over every line in the file, updating the “current section” object
as it goes along. First, it checks whether the line can be ignored, using the
expression /^\s*(;.*)?$/. Do you see how it works? The part between the
parentheses will match comments, and the ? will make sure it also matches
lines containing only whitespace.

If the line is not a comment, the code then checks whether the line starts a
new section. If so, it creates a new current section object, to which subsequent
settings will be added.

The last meaningful possibility is that the line is a normal setting, which the
code adds to the current section object.

If a line matches none of these forms, the function throws an error.
Note the recurring use of ^ and $ to make sure the expression matches the

whole line, not just part of it. Leaving these out results in code that mostly
works but behaves strangely for some input, which can be a difficult bug to
track down.

The pattern if (match = string.match(...)) is similar to the trick of using an
assignment as the condition for while. You often aren’t sure that your call
to match will succeed, so you can access the resulting object only inside an if

statement that tests for this. To not break the pleasant chain of if forms, we
assign the result of the match to a variable and immediately use that assignment
as the test in the if statement.

International characters
Because of JavaScript’s initial simplistic implementation and the fact that this
simplistic approach was later set in stone as standard behavior, JavaScript’s
regular expressions are rather dumb about characters that do not appear in
the English language. For example, as far as JavaScript’s regular expressions
are concerned, a “word character” is only one of the 26 characters in the Latin
alphabet (uppercase or lowercase) and, for some reason, the underscore char-
acter. Things like é or ß, which most definitely are word characters, will not

165

match \w (and will match uppercase \W, the nonword category).
By a strange historical accident, \s (whitespace) does not have this problem

and matches all characters that the Unicode standard considers whitespace,
including things like the nonbreaking space and the Mongolian vowel separator.

Some regular expression implementations in other programming languages
have syntax to match specific Unicode character categories, such as “all up-
percase letters”, “all punctuation”, or “control characters”. There are plans to
add support for such categories to JavaScript, but it unfortunately looks like
they won’t be realized in the near future.

Summary
Regular expressions are objects that represent patterns in strings. They use
their own syntax to express these patterns.
/abc/ A sequence of characters
/[abc]/ Any character from a set of characters
/[^abc]/ Any character not in a set of characters
/[0-9]/ Any character in a range of characters
/x+/ One or more occurrences of the pattern x

/x+?/ One or more occurrences, nongreedy
/x*/ Zero or more occurrences
/x?/ Zero or one occurrence
/x{2,4}/ Between two and four occurrences
/(abc)/ A group
/a|b|c/ Any one of several patterns
/\d/ Any digit character
/\w/ An alphanumeric character (“word character”)
/\s/ Any whitespace character
/./ Any character except newlines
/\b/ A word boundary
/^/ Start of input
/$/ End of input
A regular expression has a method test to test whether a given string matches
it. It also has an exec method that, when a match is found, returns an ar-
ray containing all matched groups. Such an array has an index property that
indicates where the match started.

Strings have a match method to match them against a regular expression
and a search method to search for one, returning only the starting position
of the match. Their replace method can replace matches of a pattern with a

166

replacement string. Alternatively, you can pass a function to replace, which will
be used to build up a replacement string based on the match text and matched
groups.

Regular expressions can have options, which are written after the closing
slash. The i option makes the match case insensitive, while the g option makes
the expression global, which, among other things, causes the replace method to
replace all instances instead of just the first.

The RegExp constructor can be used to create a regular expression value from
a string.

Regular expressions are a sharp tool with an awkward handle. They simplify
some tasks tremendously but can quickly become unmanageable when applied
to complex problems. Part of knowing how to use them is resisting the urge to
try to shoehorn things that they cannot sanely express into them.

Exercises
It is almost unavoidable that, in the course of working on these exercises,
you will get confused and frustrated by some regular expression’s inexplicable
behavior. Sometimes it helps to enter your expression into an online tool like
debuggex.com to see whether its visualization corresponds to what you intended
and to experiment with the way it responds to various input strings.

Regexp golf
Code golf is a term used for the game of trying to express a particular program
in as few characters as possible. Similarly, regexp golf is the practice of writing
as tiny a regular expression as possible to match a given pattern, and only that
pattern.

For each of the following items, write a regular expression to test whether any
of the given substrings occur in a string. The regular expression should match
only strings containing one of the substrings described. Do not worry about
word boundaries unless explicitly mentioned. When your expression works, see
whether you can make it any smaller.

1. car and cat

2. pop and prop

3. ferret, ferry, and ferrari

4. Any word ending in ious

167

https://www.debuggex.com/

5. A whitespace character followed by a dot, comma, colon, or semicolon

6. A word longer than six letters

7. A word without the letter e

Refer to the table in the chapter summary for help. Test each solution with a
few test strings.

Quoting style
Imagine you have written a story and used single quotation marks throughout
to mark pieces of dialogue. Now you want to replace all the dialogue quotes
with double quotes, while keeping the single quotes used in contractions like
aren’t.

Think of a pattern that distinguishes these two kinds of quote usage and
craft a call to the replace method that does the proper replacement.

Numbers again
A series of digits can be matched by the simple regular expression /\d+/.

Write an expression that matches only JavaScript-style numbers. It must
support an optional minus or plus sign in front of the number, the decimal
dot, and exponent notation—5e-3 or 1E10— again with an optional sign in front
of the exponent. Also note that it is not necessary for there to be digits in front
of or after the dot, but the number cannot be a dot alone. That is, .5 and 5.

are valid JavaScript numbers, but a lone dot isn’t.

168

10 Modules
Every program has a shape. On a small scale, this shape is determined by
its division into functions and the blocks inside those functions. Programmers
have a lot of freedom in the way they structure their programs. Shape follows
more from the taste of the programmer than from the program’s intended
functionality.

When looking at a larger program in its entirety, individual functions start
to blend into the background. Such a program can be made more readable if
we have a larger unit of organization.

Modules divide programs into clusters of code that, by some criterion, belong
together. This chapter explores some of the benefits that such division provides
and shows techniques for building modules in JavaScript.

Why modules help
There are a number of reasons why authors divide their books into chapters
and sections. These divisions make it easier for a reader to see how the book is
built up and to find specific parts that they are interested in. They also help
the author by providing a clear focus for every section.

The benefits of organizing a program into several files or modules are similar.
Structure helps people who aren’t yet familiar with the code find what they
are looking for and makes it easier for the programmer to keep things that are
related close together.

Some programs are even organized along the model of a traditional text,
with a well-defined order in which the reader is encouraged to go through the
program and with lots of prose (comments) providing a coherent description
of the code. This makes reading the program a lot less intimidating—reading
unknown code is usually intimidating—but has the downside of being more
work to set up. It also makes the program more difficult to change because
prose tends to be more tightly interconnected than code. This style is called
literate programming. The “project” chapters of this book can be considered
literate programs.

As a general rule, structuring things costs energy. In the early stages of

169

a project, when you are not quite sure yet what goes where or what kind of
modules the program needs at all, I endorse a minimalist, structureless attitude.
Just put everything wherever it is convenient to put it until the code stabilizes.
That way, you won’t be wasting time moving pieces of the program back and
forth, and you won’t accidentally lock yourself into a structure that does not
actually fit your program.

Namespacing
Most modern programming languages have a scope level between global (every-
one can see it) and local (only this function can see it). JavaScript does not.
Thus, by default, everything that needs to be visible outside of the scope of a
top-level function is visible everywhere.

Namespace pollution, the problem of a lot of unrelated code having to share
a single set of global variable names, was mentioned in Chapter 4, where the
Math object was given as an example of an object that acts like a module by
grouping math-related functionality.

Though JavaScript provides no actual module construct yet, objects can be
used to create publicly accessible subnamespaces, and functions can be used to
create an isolated, private namespace inside of a module. Later in this chapter, I
will discuss a way to build reasonably convenient, namespace-isolating modules
on top of the primitive concepts that JavaScript gives us.

Reuse
In a “flat” project, which isn’t structured as a set of modules, it is not apparent
which parts of the code are needed to use a particular function. In my pro-
gram for spying on my enemies (see Chapter 9), I wrote a function for reading
configuration files. If I want to use that function in another project, I must
go and copy out the parts of the old program that look like they are relevant
to the functionality that I need and paste them into my new program. Then,
if I find a mistake in that code, I’ll fix it only in whichever program that I’m
working with at the time and forget to also fix it in the other program.

Once you have lots of such shared, duplicated pieces of code, you will find
yourself wasting a lot of time and energy on moving them around and keeping
them up-to-date.

Putting pieces of functionality that stand on their own into separate files and
modules makes them easier to track, update, and share because all the various
pieces of code that want to use the module load it from the same actual file.

170

This idea gets even more powerful when the relations between modules—
which other modules each module depends on—are explicitly stated. You can
then automate the process of installing and upgrading external modules (li-
braries).

Taking this idea even further, imagine an online service that tracks and dis-
tributes hundreds of thousands of such libraries, allowing you to search for the
functionality you need and, once you find it, set up your project to automati-
cally download it.

This service exists. It is called NPM (npmjs.org). NPM consists of an
online database of modules and a tool for downloading and upgrading the
modules your program depends on. It grew out of Node.js, the browserless
JavaScript environment we will discuss in Chapter 20, but can also be useful
when programming for the browser.

Decoupling
Another important role of modules is isolating pieces of code from each other,
in the same way that the object interfaces from Chapter 6 do. A well-designed
module will provide an interface for external code to use. As the module gets
updated with bug fixes and new functionality, the existing interface stays the
same (it is stable) so that other modules can use the new, improved version
without any changes to themselves.

Note that a stable interface does not mean no new functions, methods, or
variables are added. It just means that existing functionality isn’t removed and
its meaning is not changed.

A good module interface should allow the module to grow without breaking
the old interface. This means exposing as few of the module’s internal concepts
as possible while also making the “language” that the interface exposes powerful
and flexible enough to be applicable in a wide range of situations.

For interfaces that expose a single, focused concept, such as a configuration
file reader, this design comes naturally. For others, such as a text editor, which
has many different aspects that external code might need to access (content,
styling, user actions, and so on), it requires careful design.

Using functions as namespaces
Functions are the only things in JavaScript that create a new scope. So if
we want our modules to have their own scope, we will have to base them on
functions.

171

http://npmjs.org

Consider this trivial module for associating names with day-of-the-week num-
bers, as returned by a Date object’s getDay method:

var names = [" Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday "];

function dayName(number) {

return names[number];

}

console.log(dayName (1));

// → Monday

The dayName function is part of the module’s interface, but the names variable is
not. We would prefer not to spill it into the global scope.

We can do this:

var dayName = function () {

var names = [" Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday "];

return function(number) {

return names[number];

};

}();

console.log(dayName (3));

// → Wednesday

Now names is a local variable in an (unnamed) function. This function is created
and immediately called, and its return value (the actual dayName function) is
stored in a variable. We could have pages and pages of code in this function,
with 100 local variables, and they would all be internal to our module—visible
to the module itself but not to outside code.

We can use a similar pattern to isolate code from the outside world entirely.
The following module logs a value to the console but does not actually provide
any values for other modules to use:

(function () {

function square(x) { return x * x; }

var hundred = 100;

console.log(square(hundred));

})();

// → 10000

This code simply outputs the square of 100, but in the real world it could be

172

a module that adds a method to some prototype or sets up a widget on a web
page. It is wrapped in a function to prevent the variables it uses internally
from polluting the global scope.

Why did we wrap the namespace function in a pair of parentheses? This
has to do with a quirk in JavaScript’s syntax. If an expression starts with the
keyword function, it is a function expression. However, if a statement starts with
function, it is a function declaration, which requires a name and, not being an
expression, cannot be called by writing parentheses after it. You can think of
the extra wrapping parentheses as a trick to force the function to be interpreted
as an expression.

Objects as interfaces
Now imagine that we want to add another function to our day-of-the-week
module, one that goes from a day name to a number. We can’t simply return
the function anymore but must wrap the two functions in an object.

var weekDay = function () {

var names = [" Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday "];

return {

name: function(number) { return names[number]; },

number: function(name) { return names.indexOf(name); }

};

}();

console.log(weekDay.name(weekDay.number (" Sunday ")));

// → Sunday

For bigger modules, gathering all the exported values into an object at the end
of the function becomes awkward since many of the exported functions are
likely to be big and you’d prefer to write them somewhere else, near related
internal code. A convenient alternative is to declare an object (conventionally
named exports) and add properties to that whenever we are defining something
that needs to be exported. In the following example, the module function takes
its interface object as an argument, allowing code outside of the function to
create it and store it in a variable. (Outside of a function, this refers to the
global scope object.)

(function(exports) {

var names = [" Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday "];

173

exports.name = function(number) {

return names[number];

};

exports.number = function(name) {

return names.indexOf(name);

};

})(this.weekDay = {});

console.log(weekDay.name(weekDay.number (" Saturday ")));

// → Saturday

Detaching from the global scope
The previous pattern is commonly used by JavaScript modules intended for
the browser. The module will claim a single global variable and wrap its code
in a function in order to have its own private namespace. But this pattern still
causes problems if multiple modules happen to claim the same name or if you
want to load two versions of a module alongside each other.

With a little plumbing, we can create a system that allows one module to
directly ask for the interface object of another module, without going through
the global scope. Our goal is a require function that, when given a module
name, will load that module’s file (from disk or the Web, depending on the
platform we are running on) and return the appropriate interface value.

This approach solves the problems mentioned previously and has the added
benefit of making your program’s dependencies explicit, making it harder to
accidentally make use of some module without stating that you need it.

For require we need two things. First, we want a function readFile, which
returns the content of a given file as a string. (A single such function is not
present in standard JavaScript, but different JavaScript environments, such as
the browser and Node.js, provide their own ways of accessing files. For now,
let’s just pretend we have this function.) Second, we need to be able to actually
execute this string as JavaScript code.

Evaluating data as code
There are several ways to take data (a string of code) and run it as part of the
current program.

The most obvious way is the special operator eval, which will execute a string

174

of code in the current scope. This is usually a bad idea because it breaks some
of the sane properties that scopes normally have, such as being isolated from
the outside world.

function evalAndReturnX(code) {

eval(code);

return x;

}

console.log(evalAndReturnX ("var x = 2"));

// → 2

A better way of interpreting data as code is to use the Function constructor. This
takes two arguments: a string containing a comma-separated list of argument
names and a string containing the function’s body.

var plusOne = new Function ("n", "return n + 1;");

console.log(plusOne (4));

// → 5

This is precisely what we need for our modules. We can wrap a module’s code
in a function, with that function’s scope becoming our module scope.

Require
The following is a minimal implementation of require:

function require(name) {

var code = new Function (" exports", readFile(name));

var exports = {};

code(exports);

return exports;

}

console.log(require (" weekDay ").name (1));

// → Monday

Since the new Function constructor wraps the module code in a function, we
don’t have to write a wrapping namespace function in the module file itself.
And since we make exports an argument to the module function, the module
does not have to declare it. This removes a lot of clutter from our example
module.

var names = [" Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday "];

175

exports.name = function(number) {

return names[number];

};

exports.number = function(name) {

return names.indexOf(name);

};

When using this pattern, a module typically starts with a few variable decla-
rations that load the modules it depends on.

var weekDay = require (" weekDay ");

var today = require ("today");

console.log(weekDay.name(today.dayNumber ()));

The simplistic implementation of require given previously has several problems.
For one, it will load and run a module every time it is required, so if several
modules have the same dependency or a require call is put inside a function
that will be called multiple times, time and energy will be wasted.

This can be solved by storing the modules that have already been loaded in
an object and simply returning the existing value when one is loaded multiple
times.

The second problem is that it is not possible for a module to directly export a
value other than the exports object, such as a function. For example, a module
might want to export only the constructor of the object type it defines. Right
now, it cannot do that because require always uses the exports object it creates
as the exported value.

The traditional solution for this is to provide modules with another variable,
module, which is an object that has a property exports. This property initially
points at the empty object created by require but can be overwritten with
another value in order to export something else.

function require(name) {

if (name in require.cache)

return require.cache[name];

var code = new Function ("exports , module", readFile(name));

var exports = {}, module = {exports: exports };

code(exports , module);

require.cache[name] = module.exports;

return module.exports;

}

176

require.cache = Object.create(null);

We now have a module system that uses a single global variable (require) to
allow modules to find and use each other without going through the global
scope.

This style of module system is called CommonJS modules, after the pseudo-
standard that first specified it. It is built into the Node.js system. Real imple-
mentations do a lot more than the example I showed. Most importantly, they
have a much more intelligent way of going from a module name to an actual
piece of code, allowing both pathnames relative to the current file and module
names that point directly to locally installed modules.

Slow-loading modules
Though it is possible to use the CommonJS module style when writing JavaScript
for the browser, it is somewhat involved. The reason for this is that reading a
file (module) from the Web is a lot slower than reading it from the hard disk.
While a script is running in the browser, nothing else can happen to the website
on which it runs, for reasons that will become clear in Chapter 14. This means
that if every require call went and fetched something from some faraway web
server, the page would freeze for a painfully long time while loading its scripts.

One way to work around this problem is to run a program like Browserify on
your code before you serve it on a web page. This will look for calls to require,
resolve all dependencies, and gather the needed code into a single big file. The
website itself can simply load this file to get all the modules it needs.

Another solution is to wrap the code that makes up your module in a function
so that the module loader can first load its dependencies in the background
and then call the function, initializing the module, when the dependencies
have been loaded. That is what the Asynchronous Module Definition (AMD)
module system does.

Our trivial program with dependencies would look like this in AMD:

define ([" weekDay", "today"], function(weekDay , today) {

console.log(weekDay.name(today.dayNumber ()));

});

The define function is central to this approach. It takes first an array of module
names and then a function that takes one argument for each dependency. It will
load the dependencies (if they haven’t already been loaded) in the background,
allowing the page to continue working while the files are being fetched. Once
all dependencies are loaded, define will call the function it was given, with the

177

http://browserify.org

interfaces of those dependencies as arguments.
The modules that are loaded this way must themselves contain a call to define

. The value used as their interface is whatever was returned by the function
passed to define. Here is the weekDay module again:

define ([], function () {

var names = [" Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday "];

return {

name: function(number) { return names[number]; },

number: function(name) { return names.indexOf(name); }

};

});

To be able to show a minimal implementation of define, we will pretend we
have a backgroundReadFile function that takes a filename and a function and calls
the function with the content of the file as soon as it has finished loading it.
(Chapter 17 will explain how to write that function.)

For the purpose of keeping track of modules while they are being loaded, the
implementation of define will use objects that describe the state of modules,
telling us whether they are available yet and providing their interface when
they are.

The getModule function, when given a name, will return such an object and
ensure that the module is scheduled to be loaded. It uses a cache object to
avoid loading the same module twice.

var defineCache = Object.create(null);

var currentMod = null;

function getModule(name) {

if (name in defineCache)

return defineCache[name];

var module = {exports: null ,

loaded: false ,

onLoad: []};

defineCache[name] = module;

backgroundReadFile(name , function(code) {

currentMod = module;

new Function ("", code)();

});

return module;

}

We assume the loaded file also contains a (single) call to define. The currentMod

178

variable is used to tell this call about the module object that is currently being
loaded so that it can update this object when it finishes loading. We will come
back to this mechanism in a moment.

The define function itself uses getModule to fetch or create the module objects
for the current module’s dependencies. Its task is to schedule the moduleFunction

(the function that contains the module’s actual code) to be run whenever those
dependencies are loaded. For this purpose, it defines a function whenDepsLoaded

that is added to the onLoad array of all dependencies that are not yet loaded.
This function immediately returns if there are still unloaded dependencies, so
it will do actual work only once, when the last dependency has finished loading.
It is also called immediately, from define itself, in case there are no dependencies
that need to be loaded.

function define(depNames , moduleFunction) {

var myMod = currentMod;

var deps = depNames.map(getModule);

deps.forEach(function(mod) {

if (!mod.loaded)

mod.onLoad.push(whenDepsLoaded);

});

function whenDepsLoaded () {

if (!deps.every(function(m) { return m.loaded; }))

return;

var args = deps.map(function(m) { return m.exports; });

var exports = moduleFunction.apply(null , args);

if (myMod) {

myMod.exports = exports;

myMod.loaded = true;

myMod.onLoad.forEach(function(f) { f(); });

}

}

whenDepsLoaded ();

}

When all dependencies are available, whenDepsLoaded calls the function that holds
the module, giving it the dependencies’ interfaces as arguments.

The first thing define does is store the value that currentMod had when it was
called in a variable myMod. Remember that getModule, just before evaluating the
code for a module, stored the corresponding module object in currentMod. This
allows whenDepsLoaded to store the return value of the module function in that

179

module’s exports property, set the module’s loaded property to true, and call all
the functions that are waiting for the module to load.

This code is a lot harder to follow than the require function. Its execution
does not follow a simple, predictable path. Instead, multiple operations are set
up to happen at some unspecified time in the future, which obscures the way
the code executes.

A real AMD implementation is, again, quite a lot more clever about resolv-
ing module names to actual URLs and generally more robust than the one
shown previously. The RequireJS (requirejs.org) project provides a popular
implementation of this style of module loader.

Interface design
Designing interfaces for modules and object types is one of the subtler aspects of
programming. Any nontrivial piece of functionality can be modeled in various
ways. Finding a way that works well requires insight and foresight.

The best way to learn the value of good interface design is to use lots of
interfaces—some good, some bad. Experience will teach you what works and
what doesn’t. Never assume that a painful interface is “just the way it is”. Fix
it, or wrap it in a new interface that works better for you.

Predictability
If programmers can predict the way your interface works, they (or you) won’t
get sidetracked as often by the need to look up how to use it. Thus, try to follow
conventions. When there is another module or part of the standard JavaScript
environment that does something similar to what you are implementing, it
might be a good idea to make your interface resemble the existing interface.
That way, it’ll feel familiar to people who know the existing interface.

Another area where predictability is important is the actual behavior of your
code. It can be tempting to make an unnecessarily clever interface with the
justification that it’s more convenient to use. For example, you could accept
all kinds of different types and combinations of arguments and do the “right
thing” for all of them. Or you could provide dozens of specialized convenience
functions that provide slightly different flavors of your module’s functionality.
These might make code that builds on your interface slightly shorter, but they
will also make it much harder for people to build a clear mental model of the
module’s behavior.

180

http://requirejs.org

Composability
In your interfaces, try to use the simplest data structures possible and make
functions do a single, clear thing. Whenever practical, make them pure func-
tions (see Chapter 3).

For example, it is not uncommon for modules to provide their own array-
like collection objects, with their own interface for counting and extracting
elements. Such objects won’t have map or forEach methods, and any existing
function that expects a real array won’t be able to work with them. This is an
example of poor composability—the module cannot be easily composed with
other code.

One example would be a module for spell-checking text, which we might
need when we want to write a text editor. The spell-checker could be made to
operate directly on whichever complicated data structures the editor uses and
directly call internal functions in the editor to have the user choose between
spelling suggestions. If we go that way, the module cannot be used with any
other programs. On the other hand, if we define the spell-checking interface
so that you can pass it a simple string and it will return the position in the
string where it found a possible misspelling, along with an array of suggested
corrections, then we have an interface that could also be composed with other
systems because strings and arrays are always available in JavaScript.

Layered interfaces
When designing an interface for a complex piece of functionality—sending
email, for example—you often run into a dilemma. On the one hand, you
do not want to overload the user of your interface with details. They shouldn’t
have to study your interface for 20 minutes before they can send an email. On
the other hand, you do not want to hide all the details either—when people
need to do complicated things with your module, they should be able to.

Often the solution is to provide two interfaces: a detailed low-level one for
complex situations and a simple high-level one for routine use. The second
can usually be built easily using the tools provided by the first. In the email
module, the high-level interface could just be a function that takes a message, a
sender address, and a receiver address and then sends the email. The low-level
interface would allow full control over email headers, attachments, HTML mail,
and so on.

181

Summary
Modules provide structure to bigger programs by separating the code into dif-
ferent files and namespaces. Giving these modules well-defined interfaces makes
them easier to use and reuse and makes it possible to continue using them as
the module itself evolves.

Though the JavaScript language is characteristically unhelpful when it comes
to modules, the flexible functions and objects it provides make it possible to
define rather nice module systems. Function scopes can be used as internal
namespaces for the module, and objects can be used to store sets of exported
values.

There are two popular, well-defined approaches to such modules. One is
called CommonJS Modules and revolves around a require function that fetches
a module by name and returns its interface. The other is called AMD and uses
a define function that takes an array of module names and a function and, after
loading the modules, runs the function with their interfaces as arguments.

Exercises
Month names
Write a simple module similar to the weekDay module that can convert month
numbers (zero-based, as in the Date type) to names and can convert names back
to numbers. Give it its own namespace since it will need an internal array of
month names, and use plain JavaScript, without any module loader system.

A return to electronic life
Hoping that Chapter 7 is still somewhat fresh in your mind, think back to
the system designed in that chapter and come up with a way to separate the
code into modules. To refresh your memory, these are the functions and types
defined in that chapter, in order of appearance:

Vector

Grid

directions

directionNames

randomElement

BouncingCritter

elementFromChar

World

182

charFromElement

Wall

View

WallFollower

dirPlus

LifelikeWorld

Plant

PlantEater

SmartPlantEater

Tiger

Don’t exaggerate and create too many modules. A book that starts a new
chapter for every page would probably get on your nerves, if only because of
all the space wasted on titles. Similarly, having to open 10 files to read a tiny
project isn’t helpful. Aim for three to five modules.

You can choose to have some functions become internal to their module and
thus inaccessible to other modules.

There is no single correct solution here. Module organization is largely a
matter of taste.

Circular dependencies
A tricky subject in dependency management is circular dependencies, where
module A depends on B, and B also depends on A. Many module systems
simply forbid this. CommonJS modules allow a limited form: it works as long
as the modules do not replace their default exports object with another value
and start accessing each other’s interface only after they finish loading.

Can you think of a way in which support for this feature could be imple-
mented? Look back to the definition of require and consider what the function
would have to do to allow this.

183

“The evaluator, which determines the meaning of expressions in a
programming language, is just another program.”
—Hal Abelson and Gerald Sussman, Structure and Interpretation of

Computer Programs

11 Project: A Programming
Language

Building your own programming language is surprisingly easy (as long as you
do not aim too high) and very enlightening.

The main thing I want to show in this chapter is that there is no magic
involved in building your own language. I’ve often felt that some human in-
ventions were so immensely clever and complicated that I’d never be able to
understand them. But with a little reading and tinkering, such things often
turn out to be quite mundane.

We will build a programming language called Egg. It will be a tiny, simple
language but one that is powerful enough to express any computation you can
think of. It will also allow simple abstraction based on functions.

Parsing
The most immediately visible part of a programming language is its syntax, or
notation. A parser is a program that reads a piece of text and produces a data
structure that reflects the structure of the program contained in that text. If
the text does not form a valid program, the parser should complain and point
out the error.

Our language will have a simple and uniform syntax. Everything in Egg
is an expression. An expression can be a variable, a number, a string, or an
application. Applications are used for function calls but also for constructs such
as if or while.

To keep the parser simple, strings in Egg do not support anything like back-
slash escapes. A string is simply a sequence of characters that are not double
quotes, wrapped in double quotes. A number is a sequence of digits. Variable
names can consist of any character that is not whitespace and does not have a
special meaning in the syntax.

Applications are written the way they are in JavaScript, by putting paren-
theses after an expression and having any number of arguments between those
parentheses, separated by commas.

184

do(define(x, 10),

if(>(x, 5),

print("large"),

print("small")))

The uniformity of the Egg language means that things that are operators in
JavaScript (such as >) are normal variables in this language, applied just like
other functions. And since the syntax has no concept of a block, we need a do

construct to represent doing multiple things in sequence.
The data structure that the parser will use to describe a program will consist

of expression objects, each of which has a type property indicating the kind of
expression it is and other properties to describe its content.

Expressions of type "value" represent literal strings or numbers. Their value

property contains the string or number value that they represent. Expressions
of type "word" are used for identifiers (names). Such objects have a name property
that holds the identifier’s name as a string. Finally, "apply" expressions repre-
sent applications. They have an operator property that refers to the expression
that is being applied, and they have an args property that refers to an array of
argument expressions.

The >(x, 5) part of the previous program would be represented like this:

{

type: "apply",

operator: {type: "word", name: ">"},

args: [

{type: "word", name: "x"},

{type: "value", value: 5}

]

}

Such a data structure is called a syntax tree. If you imagine the objects as
dots and the links between them as lines between those dots, it has a treelike
shape. The fact that expressions contain other expressions, which in turn might
contain more expressions, is similar to the way branches split and split again.

185

do
define

x
10

if
>

x
5

print
"large"

print
"small"

Contrast this to the parser we wrote for the configuration file format in Chapter
9, which had a simple structure: it split the input into lines and handled those
lines one at a time. There were only a few simple forms that a line was allowed
to have.

Here we must find a different approach. Expressions are not separated into
lines, and they have a recursive structure. Application expressions contain
other expressions.

Fortunately, this problem can be solved elegantly by writing a parser function
that is recursive in a way that reflects the recursive nature of the language.

We define a function parseExpression, which takes a string as input and returns
an object containing the data structure for the expression at the start of the
string, along with the part of the string left after parsing this expression. When
parsing subexpressions (the argument to an application, for example), this
function can be called again, yielding the argument expression as well as the
text that remains. This text may in turn contain more arguments or may be
the closing parenthesis that ends the list of arguments.

This is the first part of the parser:

function parseExpression(program) {

program = skipSpace(program);

var match , expr;

if (match = /^"([^"]*) "/. exec(program))

186

expr = {type: "value", value: match [1]};

else if (match = /^\d+\b/.exec(program))

expr = {type: "value", value: Number(match [0])};

else if (match = /^[^\s() ,"]+/. exec(program))

expr = {type: "word", name: match [0]};

else

throw new SyntaxError (" Unexpected syntax: " + program);

return parseApply(expr , program.slice(match [0]. length));

}

function skipSpace(string) {

var first = string.search (/\S/);

if (first == -1) return "";

return string.slice(first);

}

Because Egg allows any amount of whitespace between its elements, we have
to repeatedly cut the whitespace off the start of the program string. This is
what the skipSpace function helps with.

After skipping any leading space, parseExpression uses three regular expres-
sions to spot the three simple (atomic) elements that Egg supports: strings,
numbers, and words. The parser constructs a different kind of data structure
depending on which one matches. If the input does not match one of these three
forms, it is not a valid expression, and the parser throws an error. SyntaxError

is a standard error object type, which is raised when an attempt is made to
run an invalid JavaScript program.

We can then cut off the part that we matched from the program string and
pass that, along with the object for the expression, to parseApply, which checks
whether the expression is an application. If so, it parses a parenthesized list of
arguments.

function parseApply(expr , program) {

program = skipSpace(program);

if (program [0] != "(")

return {expr: expr , rest: program };

program = skipSpace(program.slice (1));

expr = {type: "apply", operator: expr , args: []};

while (program [0] != ")") {

var arg = parseExpression(program);

expr.args.push(arg.expr);

program = skipSpace(arg.rest);

if (program [0] == ",")

187

program = skipSpace(program.slice (1));

else if (program [0] != ")")

throw new SyntaxError (" Expected ' , ' or ') '");

}

return parseApply(expr , program.slice (1));

}

If the next character in the program is not an opening parenthesis, this is not
an application, and parseApply simply returns the expression it was given.

Otherwise, it skips the opening parenthesis and creates the syntax tree object
for this application expression. It then recursively calls parseExpression to parse
each argument until a closing parenthesis is found. The recursion is indirect,
through parseApply and parseExpression calling each other.

Because an application expression can itself be applied (such as in multiplier

(2)(1)), parseApply must, after it has parsed an application, call itself again to
check whether another pair of parentheses follows.

This is all we need to parse Egg. We wrap it in a convenient parse func-
tion that verifies that it has reached the end of the input string after parsing
the expression (an Egg program is a single expression), and that gives us the
program’s data structure.

function parse(program) {

var result = parseExpression(program);

if (skipSpace(result.rest).length > 0)

throw new SyntaxError (" Unexpected text after program ");

return result.expr;

}

console.log(parse ("+(a, 10)"));

// → {type: "apply",

// operator: {type: "word", name: "+"},

// args: [{type: "word", name: "a"},

// {type: "value", value: 10}]}

It works! It doesn’t give us very helpful information when it fails and doesn’t
store the line and column on which each expression starts, which might be
helpful when reporting errors later, but it’s good enough for our purposes.

The evaluator
What can we do with the syntax tree for a program? Run it, of course! And
that is what the evaluator does. You give it a syntax tree and an environment
object that associates names with values, and it will evaluate the expression

188

that the tree represents and return the value that this produces.

function evaluate(expr , env) {

switch(expr.type) {

case "value":

return expr.value;

case "word":

if (expr.name in env)

return env[expr.name];

else

throw new ReferenceError (" Undefined variable: " +

expr.name);

case "apply":

if (expr.operator.type == "word" &&

expr.operator.name in specialForms)

return specialForms[expr.operator.name](expr.args ,

env);

var op = evaluate(expr.operator , env);

if (typeof op != "function ")

throw new TypeError (" Applying a non -function .");

return op.apply(null , expr.args.map(function(arg) {

return evaluate(arg , env);

}));

}

}

var specialForms = Object.create(null);

The evaluator has code for each of the expression types. A literal value expres-
sion simply produces its value. (For example, the expression 100 just evaluates
to the number 100.) For a variable, we must check whether it is actually defined
in the environment and, if it is, fetch the variable’s value.

Applications are more involved. If they are a special form, like if, we do not
evaluate anything and simply pass the argument expressions, along with the
environment, to the function that handles this form. If it is a normal call, we
evaluate the operator, verify that it is a function, and call it with the result of
evaluating the arguments.

We will use plain JavaScript function values to represent Egg’s function val-
ues. We will come back to this later, when the special form called fun is defined.

The recursive structure of evaluate resembles the similar structure of the
parser. Both mirror the structure of the language itself. It would also be
possible to integrate the parser with the evaluator and evaluate during parsing,
but splitting them up this way makes the program more readable.

189

This is really all that is needed to interpret Egg. It is that simple. But
without defining a few special forms and adding some useful values to the
environment, you can’t do anything with this language yet.

Special forms
The specialForms object is used to define special syntax in Egg. It associates
words with functions that evaluate such special forms. It is currently empty.
Let’s add some forms.

specialForms ["if"] = function(args , env) {

if (args.length != 3)

throw new SyntaxError ("Bad number of args to if");

if (evaluate(args[0], env) !== false)

return evaluate(args[1], env);

else

return evaluate(args[2], env);

};

Egg’s if construct expects exactly three arguments. It will evaluate the first,
and if the result isn’t the value false, it will evaluate the second. Otherwise,
the third gets evaluated. This if form is more similar to JavaScript’s ternary
?: operator than to JavaScript’s if. It is an expression, not a statement, and
it produces a value, namely, the result of the second or third argument.

Egg differs from JavaScript in how it handles the condition value to if. It
will not treat things like zero or the empty string as false, but only the precise
value false.

The reason we need to represent if as a special form, rather than a regular
function, is that all arguments to functions are evaluated before the function is
called, whereas if should evaluate only either its second or its third argument,
depending on the value of the first.

The while form is similar.

specialForms ["while"] = function(args , env) {

if (args.length != 2)

throw new SyntaxError ("Bad number of args to while");

while (evaluate(args[0], env) !== false)

evaluate(args[1], env);

// Since undefined does not exist in Egg , we return false ,

// for lack of a meaningful result.

190

return false;

};

Another basic building block is do, which executes all its arguments from top
to bottom. Its value is the value produced by the last argument.

specialForms ["do"] = function(args , env) {

var value = false;

args.forEach(function(arg) {

value = evaluate(arg , env);

});

return value;

};

To be able to create variables and give them new values, we also create a
form called define. It expects a word as its first argument and an expression
producing the value to assign to that word as its second argument. Since define,
like everything, is an expression, it must return a value. We’ll make it return
the value that was assigned (just like JavaScript’s = operator).

specialForms [" define "] = function(args , env) {

if (args.length != 2 || args [0]. type != "word")

throw new SyntaxError ("Bad use of define ");

var value = evaluate(args[1], env);

env[args [0]. name] = value;

return value;

};

The environment
The environment accepted by evaluate is an object with properties whose names
correspond to variable names and whose values correspond to the values those
variables are bound to. Let’s define an environment object to represent the
global scope.

To be able to use the if construct we just defined, we must have access to
Boolean values. Since there are only two Boolean values, we do not need special
syntax for them. We simply bind two variables to the values true and false and
use those.

var topEnv = Object.create(null);

topEnv ["true"] = true;

topEnv ["false"] = false;

191

We can now evaluate a simple expression that negates a Boolean value.

var prog = parse("if(true , false , true)");

console.log(evaluate(prog , topEnv));

// → false

To supply basic arithmetic and comparison operators, we will also add some
function values to the environment. In the interest of keeping the code short,
we’ll use new Function to synthesize a bunch of operator functions in a loop,
rather than defining them all individually.

["+", "-", "*", "/", "==", "<", ">"]. forEach(function(op) {

topEnv[op] = new Function ("a, b", "return a " + op + " b;");

});

A way to output values is also very useful, so we’ll wrap console.log in a function
and call it print.

topEnv ["print"] = function(value) {

console.log(value);

return value;

};

That gives us enough elementary tools to write simple programs. The following
run function provides a convenient way to write and run them. It creates a fresh
environment and parses and evaluates the strings we give it as a single program.

function run() {

var env = Object.create(topEnv);

var program = Array.prototype.slice

.call(arguments , 0).join ("\n");

return evaluate(parse(program), env);

}

The use of Array.prototype.slice.call is a trick to turn an array-like object, such
as arguments, into a real array so that we can call join on it. It takes all the
arguments given to run and treats them as the lines of a program.

run("do(define(total , 0) ,",

" define(count , 1) ,",

" while(<(count , 11) ,",

" do(define(total , +(total , count)),",

" define(count , +(count , 1)))),",

" print(total))");

// → 55

This is the program we’ve seen several times before, which computes the sum

192

of the numbers 1 to 10, expressed in Egg. It is clearly uglier than the equivalent
JavaScript program but not bad for a language implemented in less than 150
lines of code.

Functions
A programming language without functions is a poor programming language
indeed.

Fortunately, it is not hard to add a fun construct, which treats its last ar-
gument as the function’s body and treats all the arguments before that as the
names of the function’s arguments.

specialForms ["fun"] = function(args , env) {

if (!args.length)

throw new SyntaxError (" Functions need a body");

function name(expr) {

if (expr.type != "word")

throw new SyntaxError ("Arg names must be words");

return expr.name;

}

var argNames = args.slice(0, args.length - 1).map(name);

var body = args[args.length - 1];

return function () {

if (arguments.length != argNames.length)

throw new TypeError ("Wrong number of arguments ");

var localEnv = Object.create(env);

for (var i = 0; i < arguments.length; i++)

localEnv[argNames[i]] = arguments[i];

return evaluate(body , localEnv);

};

};

Functions in Egg have their own local environment, just like in JavaScript.
We use Object.create to make a new object that has access to the variables in
the outer environment (its prototype) but that can also contain new variables
without modifying that outer scope.

The function created by the fun form creates this local environment and
adds the argument variables to it. It then evaluates the function body in this
environment and returns the result.

run("do(define(plusOne , fun(a, +(a, 1))),",

" print(plusOne (10)))");

193

// → 11

run("do(define(pow , fun(base , exp ,",

" if(==(exp , 0) ,",

" 1,",

" *(base , pow(base , -(exp , 1)))))),",

" print(pow(2, 10)))");

// → 1024

Compilation
What we have built is an interpreter. During evaluation, it acts directly on the
representation of the program produced by the parser.

Compilation is the process of adding another step between the parsing and
the running of a program, which transforms the program into something that
can be evaluated more efficiently by doing as much work as possible in advance.
For example, in well-designed languages it is obvious, for each use of a variable,
which variable is being referred to, without actually running the program. This
can be used to avoid looking up the variable by name every time it is accessed
and to directly fetch it from some predetermined memory location.

Traditionally, compilation involves converting the program to machine code,
the raw format that a computer’s processor can execute. But any process
that converts a program to a different representation can be thought of as
compilation.

It would be possible to write an alternative evaluation strategy for Egg, one
that first converts the program to a JavaScript program, uses new Function to
invoke the JavaScript compiler on it, and then runs the result. When done right,
this would make Egg run very fast while still being quite simple to implement.

If you are interested in this topic and willing to spend some time on it, I
encourage you to try to implement such a compiler as an exercise.

Cheating
When we defined if and while, you probably noticed that they were more or less
trivial wrappers around JavaScript’s own if and while. Similarly, the values in
Egg are just regular old JavaScript values.

If you compare the implementation of Egg, built on top of JavaScript, with
the amount of work and complexity required to build a programming language
directly on the raw functionality provided by a machine, the difference is huge.

194

Regardless, this example hopefully gave you an impression of the way program-
ming languages work.

And when it comes to getting something done, cheating is more effective than
doing everything yourself. Though the toy language in this chapter doesn’t do
anything that couldn’t be done better in JavaScript, there are situations where
writing small languages helps get real work done.

Such a language does not have to resemble a typical programming language.
If JavaScript didn’t come equipped with regular expressions, you could write
your own parser and evaluator for such a sublanguage.

Or imagine you are building a giant robotic dinosaur and need to program
its behavior. JavaScript might not be the most effective way to do this. You
might instead opt for a language that looks like this:

behavior walk

perform when

destination ahead

actions

move left -foot

move right -foot

behavior attack

perform when

Godzilla in-view

actions

fire laser -eyes

launch arm -rockets

This is what is usually called a domain-specific language, a language tailored to
express a narrow domain of knowledge. Such a language can be more expressive
than a general-purpose language because it is designed to express exactly the
things that need expressing in its domain and nothing else.

Exercises
Arrays
Add support for arrays to Egg by adding the following three functions to the top
scope: array(...) to construct an array containing the argument values, length

(array) to get an array’s length, and element(array, n) to fetch the nth element
from an array.

195

Closure
The way we have defined fun allows functions in Egg to “close over” the sur-
rounding environment, allowing the function’s body to use local values that
were visible at the time the function was defined, just like JavaScript functions
do.

The following program illustrates this: function f returns a function that
adds its argument to f’s argument, meaning that it needs access to the local
scope inside f to be able to use variable a.

run("do(define(f, fun(a, fun(b, +(a, b)))),",

" print(f(4)(5)))");

// → 9

Go back to the definition of the fun form and explain which mechanism causes
this to work.

Comments
It would be nice if we could write comments in Egg. For example, whenever
we find a hash sign (\#), we could treat the rest of the line as a comment and
ignore it, similar to // in JavaScript.

We do not have to make any big changes to the parser to support this. We
can simply change skipSpace to skip comments like they are whitespace so that
all the points where skipSpace is called will now also skip comments. Make this
change.

Fixing scope
Currently, the only way to assign a variable a value is define. This construct
acts as a way both to define new variables and to give existing ones a new
value.

This ambiguity causes a problem. When you try to give a nonlocal variable
a new value, you will end up defining a local one with the same name instead.
(Some languages work like this by design, but I’ve always found it a silly way
to handle scope.)

Add a special form set, similar to define, which gives a variable a new value,
updating the variable in an outer scope if it doesn’t already exist in the inner
scope. If the variable is not defined at all, throw a ReferenceError (which is
another standard error type).

The technique of representing scopes as simple objects, which has made
things convenient so far, will get in your way a little at this point. You might

196

want to use the Object.getPrototypeOf function, which returns the prototype of
an object. Also remember that scopes do not derive from Object.prototype, so if
you want to call hasOwnProperty on them, you have to use this clumsy expression:

Object.prototype.hasOwnProperty.call(scope , name);

This fetches the hasOwnProperty method from the Object prototype and then calls
it on a scope object.

197

“The browser is a really hostile programming environment.”
—Douglas Crockford, The JavaScript Programming Language (video

lecture)

12 JavaScript and the Browser
The next part of this book will talk about web browsers. Without web browsers,
there would be no JavaScript. And even if there were, no one would ever have
paid any attention to it.

Web technology has, from the start, been decentralized, not just technically
but also in the way it has evolved. Various browser vendors have added new
functionality in ad hoc and sometimes poorly thought out ways, which then
sometimes ended up being adopted by others and finally set down as a standard.

This is both a blessing and a curse. On the one hand, it is empowering to
not have a central party control a system but have it be improved by various
parties working in loose collaboration (or, occasionally, open hostility). On the
other hand, the haphazard way in which the Web was developed means that
the resulting system is not exactly a shining example of internal consistency.
In fact, some parts of it are downright messy and confusing.

Networks and the Internet
Computer networks have been around since the 1950s. If you put cables be-
tween two or more computers and allow them to send data back and forth
through these cables, you can do all kinds of wonderful things.

If connecting two machines in the same building allows us to do wonderful
things, connecting machines all over the planet should be even better. The
technology to start implementing this vision was developed in the 1980s, and
the resulting network is called the Internet. It has lived up to its promise.

A computer can use this network to spew bits at another computer. For any
effective communication to arise out of this bit-spewing, the computers at both
ends must know what the bits are supposed to represent. The meaning of any
given sequence of bits depends entirely on the kind of thing that it is trying to
express and on the encoding mechanism used.

A network protocol describes a style of communication over a network. There
are protocols for sending email, for fetching email, for sharing files, or even for
controlling computers that happen to be infected by malicious software.

For example, a simple chat protocol might consist of one computer sending

198

the bits that represent the text “CHAT?” to another machine and the other
responding with “OK!” to confirm that it understands the protocol. They can
then proceed to send each other strings of text, read the text sent by the other
from the network, and display whatever they receive on their screens.

Most protocols are built on top of other protocols. Our example chat protocol
treats the network as a streamlike device into which you can put bits and have
them arrive at the correct destination in the correct order. Ensuring those
things is already a rather difficult technical problem.

The Transmission Control Protocol (TCP) is a protocol that solves this prob-
lem. All Internet-connected devices “speak” it, and most communication on
the Internet is built on top of it.

A TCP connection works as follows: one computer must be waiting, or
listening, for other computers to start talking to it. To be able to listen for
different kinds of communication at the same time on a single machine, each
listener has a number (called a port) associated with it. Most protocols specify
which port should be used by default. For example, when we want to send
an email using the SMTP protocol, the machine through which we send it is
expected to be listening on port 25.

Another computer can then establish a connection by connecting to the tar-
get machine using the correct port number. If the target machine can be
reached and is listening on that port, the connection is successfully created.
The listening computer is called the server, and the connecting computer is
called the client.

Such a connection acts as a two-way pipe through which bits can flow—the
machines on both ends can put data into it. Once the bits are successfully
transmitted, they can be read out again by the machine on the other side.
This is a convenient model. You could say that TCP provides an abstraction
of the network.

The Web
The World Wide Web (not to be confused with the Internet as a whole) is a
set of protocols and formats that allow us to visit web pages in a browser. The
“Web” part in the name refers to the fact that such pages can easily link to
each other, thus connecting into a huge mesh that users can move through.

To add content to the Web, all you need to do is connect a machine to the
Internet, and have it listen on port 80, using the Hypertext Transfer Protocol
(HTTP). This protocol allows other computers to request documents over the
network.

199

Each document on the Web is named by a Uniform Resource Locator (URL),
which looks something like this:

http :// eloquentjavascript.net/12 _browser.html

| | | |

protocol server path

The first part tells us that this URL uses the HTTP protocol (as opposed to,
for example, encrypted HTTP, which would be https://). Then comes the part
that identifies which server we are requesting the document from. Last is a
path string that identifies the specific document (or resource) we are interested
in.

Each machine connected to the Internet gets a unique IP address, which
looks something like 37.187.37.82. You can use these directly as the server part
of a URL. But lists of more or less random numbers are hard to remember and
awkward to type, so you can instead register a domain name to point toward a
specific machine or set of machines. I registered eloquentjavascript.net to point
at the IP address of a machine I control and can thus use that domain name
to serve web pages.

If you type the previous URL into your browser’s address bar, it will try
to retrieve and display the document at that URL. First, your browser has to
find out what address eloquentjavascript.net refers to. Then, using the HTTP
protocol, it makes a connection to the server at that address and asks for the
resource /12_browser.html.

We will take a closer look at the HTTP protocol in Chapter 17.

HTML
HTML, which stands for Hypertext Markup Language, is the document format
used for web pages. An HTML document contains text, as well as tags that
give structure to the text, describing things such as links, paragraphs, and
headings.

A simple HTML document looks like this:

<!doctype html >

<html >

<head >

<title >My home page </title >

</head >

<body >

<h1>My home page </h1>

<p>Hello , I am Marijn and this is my home page.</p>

200

<p>I also wrote a book! Read it

here .</p>

</body >

</html >

This is what such a document would look like in the browser:

The tags, wrapped in angle brackets (< and >), provide information about the
structure of the document. The other text is just plain text.

The document starts with <!doctype html>, which tells the browser to interpret
it as modern HTML, as opposed to various dialects that were in use in the past.

HTML documents have a head and a body. The head contains information
about the document, and the body contains the document itself. In this case,
we first declared that the title of this document is “My home page” and then
gave a document containing a heading (<h1>, meaning “heading 1”—<h2> to <h6>

produce more minor headings) and two paragraphs (<p>).
Tags come in several forms. An element, such as the body, a paragraph,

or a link, is started by an opening tag like <p> and ended by a closing tag
like </p>. Some opening tags, such as the one for the link (<a>), contain extra
information in the form of name="value" pairs. These are called attributes. In this
case, the destination of the link is indicated with href="http://eloquentjavascript

.net", where href stands for “hypertext reference”.
Some kinds of tags do not enclose anything and thus do not need to be closed.

An example of this would be , which will
display the image found at the given source URL.

To be able to include angle brackets in the text of a document, even though
they have a special meaning in HTML, yet another form of special notation
has to be introduced. A plain opening angle bracket is written as < (“less
than”), and a closing bracket is written as > (“greater than”). In HTML, an
ampersand (&) character followed by a word and a semicolon (;) is called an
entity, and will be replaced by the character it encodes.

This is analogous to the way backslashes are used in JavaScript strings. Since
this mechanism gives ampersand characters a special meaning, too, those need
to be escaped as &. Inside an attribute, which is wrapped in double quotes,

201

" can be used to insert an actual quote character.
HTML is parsed in a remarkably error-tolerant way. When tags that should

be there are missing, the browser reconstructs them. The way in which this is
done has been standardized, and you can rely on all modern browsers to do it
in the same way.

The following document will be treated just like the one shown previously:

<!doctype html >

<title >My home page </title >

<h1>My home page </h1>

<p>Hello , I am Marijn and this is my home page.

<p>I also wrote a book! Read it

here .

The <html>, <head>, and <body> tags are gone completely. The browser knows
that <title> belongs in a head, and that <h1> in a body. Furthermore, I am
no longer explicitly closing the paragraphs since opening a new paragraph or
ending the document will close them implicitly. The quotes around the link
target are also gone.

This book will usually omit the <html>, <head>, and <body> tags from examples
to keep them short and free of clutter. But I will close tags and include quotes
around attributes.

I will also usually omit the doctype. This is not to be taken as an encour-
agement to omit doctype declarations. Browsers will often do ridiculous things
when you forget them. You should consider doctypes implicitly present in
examples, even when they are not actually shown in the text.

HTML and JavaScript
In the context of this book, the most important HTML tag is <script>. This
tag allows us to include a piece of JavaScript in a document.

<h1>Testing alert </h1>

<script >alert("hello !");</script >

Such a script will run as soon as its <script> tag is encountered as the browser
reads the HTML. The page shown earlier will pop up an alert dialog when
opened.

Including large programs directly in HTML documents is often impractical.
The <script> tag can be given an src attribute in order to fetch a script file (a

202

text file containing a JavaScript program) from a URL.

<h1>Testing alert </h1>

<script src="code/hello.js"></script >

The code/hello.js file included here contains the same simple program, alert

("hello!"). When an HTML page references other URLs as part of itself, for
example an image file or a script—web browsers will retrieve them immediately
and include them in the page.

A script tag must always be closed with </script>, even if it refers to a script
file and doesn’t contain any code. If you forget this, the rest of the page will
be interpreted as part of the script.

Some attributes can also contain a JavaScript program. The <button> tag
shown next (which shows up as a button) has an onclick attribute, whose con-
tent will be run whenever the button is clicked.

<button onclick ="alert (' Boom ! ') ;">DO NOT PRESS </button >

Note that I had to use single quotes for the string in the onclick attribute
because double quotes are already used to quote the whole attribute. I could
also have used ", but that’d make the program harder to read.

In the sandbox
Running programs downloaded from the Internet is potentially dangerous. You
do not know much about the people behind most sites you visit, and they do
not necessarily mean well. Running programs by people who do not mean well
is how you get your computer infected by viruses, your data stolen, and your
accounts hacked.

Yet the attraction of the Web is that you can surf it without necessarily
trusting all the pages you visit. This is why browsers severely limit the things
a JavaScript program may do: it can’t look at the files on your computer or
modify anything not related to the web page it was embedded in.

Isolating a programming environment in this way is called sandboxing, the
idea being that the program is harmlessly playing in a sandbox. But you should
imagine this particular kind of sandbox as having a cage of thick steel bars over
it, which makes it somewhat different from your typical playground sandbox.

The hard part of sandboxing is allowing the programs enough room to be
useful yet at the same time restricting them from doing anything dangerous.
Lots of useful functionality, such as communicating with other servers or read-
ing the content of the copy-paste clipboard, can also be used to do problematic,

203

privacy-invading things.
Every now and then, someone comes up with a new way to circumvent the

limitations of a browser and do something harmful, ranging from leaking minor
private information to taking over the whole machine that the browser runs on.
The browser developers respond by fixing the hole, and all is well again—that
is, until the next problem is discovered, and hopefully publicized, rather than
secretly exploited by some government or mafia.

Compatibility and the browser wars
In the early stages of the Web, a browser called Mosaic dominated the market.
After a few years, the balance had shifted to Netscape, which was then, in
turn, largely supplanted by Microsoft’s Internet Explorer. At any point where
a single browser was dominant, that browser’s vendor would feel entitled to
unilaterally invent new features for the Web. Since most users used the same
browser, websites would simply start using those features—never mind the
other browsers.

This was the dark age of compatibility, often called the browser wars. Web
developers were left with not one unified Web but two or three incompatible
platforms. To make things worse, the browsers in use around 2003 were all full
of bugs, and of course the bugs were different for each browser. Life was hard
for people writing web pages.

Mozilla Firefox, a not-for-profit offshoot of Netscape, challenged Internet
Explorer’s hegemony in the late 2000s. Because Microsoft was not particularly
interested in staying competitive at the time, Firefox took quite a chunk of
market share away from it. Around the same time, Google introduced its
Chrome browser, and Apple’s Safari browser gained popularity, leading to a
situation where there were four major players, rather than one.

The new players had a more serious attitude toward standards and better
engineering practices, leading to less incompatibility and fewer bugs. Microsoft,
seeing its market share crumble, came around and adopted these attitudes. If
you are starting to learn web development today, consider yourself lucky. The
latest versions of the major browsers behave quite uniformly and have relatively
few bugs.

That is not to say that the situation is perfect just yet. Some of the people
using the Web are, for reasons of inertia or corporate policy, stuck with very
old browsers. Until those browsers die out entirely, writing websites that work
for them will require a lot of arcane knowledge about their shortcomings and
quirks. This book is not about those quirks. Rather, it aims to present the

204

modern, sane style of web programming.

205

13 The Document Object Model
When you open a web page in your browser, the browser retrieves the page’s
HTML text and parses it, much like the way our parser from Chapter 11 parsed
programs. The browser builds up a model of the document’s structure and then
uses this model to draw the page on the screen.

This representation of the document is one of the toys that a JavaScript
program has available in its sandbox. You can read from the model and also
change it. It acts as a live data structure: when it is modified, the page on the
screen is updated to reflect the changes.

Document structure
You can imagine an HTML document as a nested set of boxes. Tags such as
<body> and </body> enclose other tags, which in turn contain other tags or text.
Here’s the example document from the previous chapter:

<!doctype html >

<html >

<head >

<title >My home page </title >

</head >

<body >

<h1>My home page </h1>

<p>Hello , I am Marijn and this is my home page.</p>

<p>I also wrote a book! Read it

here .</p>

</body >

</html >

This page has the following structure:

206

here

a

.I also wrote a book! Read it

p

Hello, I am Marijn and this is...

p

My home page

h1

body

My home page

title

head

html

The data structure the browser uses to represent the document follows this
shape. For each box, there is an object, which we can interact with to find
out things such as what HTML tag it represents and which boxes and text it
contains. This representation is called the Document Object Model, or DOM
for short.

The global variable document gives us access to these objects. Its documentElement
property refers to the object representing the <html> tag. It also provides the
properties head and body, which hold the objects for those elements.

Trees
Think back to the syntax trees from Chapter 11 for a moment. Their structures
are strikingly similar to the structure of a browser’s document. Each node may
refer to other nodes, children, which in turn may have their own children. This
shape is typical of nested structures where elements can contain sub-elements
that are similar to themselves.

We call a data structure a tree when it has a branching structure, has no
cycles (a node may not contain itself, directly or indirectly), and has a single,

207

well-defined “root”. In the case of the DOM, document.documentElement serves as
the root.

Trees come up a lot in computer science. In addition to representing recur-
sive structures such as HTML documents or programs, they are often used to
maintain sorted sets of data because elements can usually be found or inserted
more efficiently in a sorted tree than in a sorted flat array.

A typical tree has different kinds of nodes. The syntax tree for the Egg
language had variables, values, and application nodes. Application nodes al-
ways have children, whereas variables and values are leaves, or nodes without
children.

The same goes for the DOM. Nodes for regular elements, which represent
HTML tags, determine the structure of the document. These can have child
nodes. An example of such a node is document.body. Some of these children
can be leaf nodes, such as pieces of text or comments (comments are written
between <!-- and --> in HTML).

Each DOM node object has a nodeType property, which contains a numeric
code that identifies the type of node. Regular elements have the value 1,
which is also defined as the constant property document.ELEMENT_NODE. Text nodes,
representing a section of text in the document, have the value 3 (document.
TEXT_NODE). Comments have the value 8 (document.COMMENT_NODE).

So another way to visualize our document tree is as follows:

html head title My home page

body h1 My home page

p Hello! I am...

p I also wrote...

herea

.

The leaves are text nodes, and the arrows indicate parent-child relationships
between nodes.

208

The standard
Using cryptic numeric codes to represent node types is not a very JavaScript-
like thing to do. Later in this chapter, we’ll see that other parts of the DOM
interface also feel cumbersome and alien. The reason for this is that the DOM
wasn’t designed for just JavaScript. Rather, it tries to define a language-neutral
interface that can be used in other systems as well—not just HTML but also
XML, which is a generic data format with an HTML-like syntax.

This is unfortunate. Standards are often useful. But in this case, the advan-
tage (cross-language consistency) isn’t all that compelling. Having an interface
that is properly integrated with the language you are using will save you more
time than having a familiar interface across languages.

As an example of such poor integration, consider the childNodes property that
element nodes in the DOM have. This property holds an array-like object, with
a length property and properties labeled by numbers to access the child nodes.
But it is an instance of the NodeList type, not a real array, so it does not have
methods such as slice and forEach.

Then there are issues that are simply poor design. For example, there is
no way to create a new node and immediately add children or attributes to
it. Instead, you have to first create it, then add the children one by one, and
finally set the attributes one by one, using side effects. Code that interacts
heavily with the DOM tends to get long, repetitive, and ugly.

But these flaws aren’t fatal. Since JavaScript allows us to create our own
abstractions, it is easy to write some helper functions that allow you to express
the operations you are performing in a clearer and shorter way. In fact, many
libraries intended for browser programming come with such tools.

Moving through the tree
DOM nodes contain a wealth of links to other nearby nodes. The following
diagram illustrates these:

209

I also wrote a book! ...

p

Hello, I am Marijn...

p

My home page

h1

body

0

1

2

childNodes firstChild

lastChild

previousSibling

nextSibling

parentNode

Although the diagram shows only one link of each type, every node has a
parentNode property that points to its containing node. Likewise, every element
node (node type 1) has a childNodes property that points to an array-like object
holding its children.

In theory, you could move anywhere in the tree using just these parent and
child links. But JavaScript also gives you access to a number of additional
convenience links. The firstChild and lastChild properties point to the first and
last child elements or have the value null for nodes without children. Similarly,
previousSibling and nextSibling point to adjacent nodes, which are nodes with
the same parent that appear immediately before or after the node itself. For
a first child, previousSibling will be null, and for a last child, nextSibling will be
null.

When dealing with a nested data structure like this one, recursive functions
are often useful. The following recursive function scans a document for text
nodes containing a given string and returns true when it has found one:

function talksAbout(node , string) {

if (node.nodeType == document.ELEMENT_NODE) {

for (var i = 0; i < node.childNodes.length; i++) {

if (talksAbout(node.childNodes[i], string))

return true;

}

return false;

} else if (node.nodeType == document.TEXT_NODE) {

return node.nodeValue.indexOf(string) > -1;

}

}

210

console.log(talksAbout(document.body , "book"));

// → true

The nodeValue property of a text node refers to the string of text that it repre-
sents.

Finding elements
Navigating these links among parents, children, and siblings is often useful,
as in the previous function, which runs through the whole document. But
if we want to find a specific node in the document, reaching it by starting
at document.body and blindly following a hard-coded path of links is a bad idea.
Doing so bakes assumptions into our program about the precise structure of the
document—a structure we might want to change later. Another complicating
factor is that text nodes are created even for the whitespace between nodes.
The example document’s body tag does not have just three children (<h1> and
two <p> elements) but actually has seven: those three, plus the spaces before,
after, and between them.

So if we want to get the href attribute of the link in that document, we
don’t want to say something like “Get the second child of the sixth child of
the document body”. It’d be better if we could say “Get the first link in the
document”. And we can.

var link = document.body.getElementsByTagName ("a")[0];

console.log(link.href);

All element nodes have a getElementsByTagNamemethod, which collects all elements
with the given tag name that are descendants (direct or indirect children) of
the given node and returns them as an array-like object.

To find a specific single node, you can give it an id attribute and use document

.getElementById instead.

<p>My ostrich Gertrude:</p>

<p></p>

<script >

var ostrich = document.getElementById (" gertrude ");

console.log(ostrich.src);

</script >

A third, similar method is getElementsByClassName, which, like getElementsByTagName

, searches through the contents of an element node and retrieves all elements

211

that have the given string in their class attribute.

Changing the document
Almost everything about the DOM data structure can be changed. Element
nodes have a number of methods that can be used to change their content. The
removeChild method removes the given child node from the document. To add a
child, we can use appendChild, which puts it at the end of the list of children, or
insertBefore, which inserts the node given as the first argument before the node
given as the second argument.

<p>One </p>

<p>Two </p>

<p>Three </p>

<script >

var paragraphs = document.body.getElementsByTagName ("p");

document.body.insertBefore(paragraphs [2], paragraphs [0]);

</script >

A node can exist in the document in only one place. Thus, inserting paragraph
“Three” in front of paragraph “One” will first remove it from the end of the
document and then insert it at the front, resulting in “Three/One/Two”. All
operations that insert a node somewhere will, as a side effect, cause it to be
removed from its current position (if it has one).

The replaceChild method is used to replace a child node with another one. It
takes as arguments two nodes: a new node and the node to be replaced. The
replaced node must be a child of the element the method is called on. Note that
both replaceChild and insertBefore expect the new node as their first argument.

Creating nodes
In the following example, we want to write a script that replaces all images
(tags) in the document with the text held in their alt attributes, which
specifies an alternative textual representation of the image.

This involves not only removing the images but adding a new text node to
replace them. For this, we use the document.createTextNode method.

<p>The in the

.</p>

212

<p><button onclick =" replaceImages ()">Replace </button ></p>

<script >

function replaceImages () {

var images = document.body.getElementsByTagName ("img");

for (var i = images.length - 1; i >= 0; i--) {

var image = images[i];

if (image.alt) {

var text = document.createTextNode(image.alt);

image.parentNode.replaceChild(text , image);

}

}

}

</script >

Given a string, createTextNode gives us a type 3 DOM node (a text node), which
we can insert into the document to make it show up on the screen.

The loop that goes over the images starts at the end of the list of nodes. This
is necessary because the node list returned by a method like getElementsByTagName

(or a property like childNodes) is live. That is, it is updated as the document
changes. If we started from the front, removing the first image would cause the
list to lose its first element so that the second time the loop repeats, where i

is 1, it would stop because the length of the collection is now also 1.
If you want a solid collection of nodes, as opposed to a live one, you can

convert the collection to a real array by calling the array slice method on it.

var arrayish = {0: "one", 1: "two", length: 2};

var real = Array.prototype.slice.call(arrayish , 0);

real.forEach(function(elt) { console.log(elt); });

// → one

// two

To create regular element nodes (type 1), you can use the document.createElement

method. This method takes a tag name and returns a new empty node of the
given type.

The following example defines a utility elt, which creates an element node
and treats the rest of its arguments as children to that node. This function is
then used to add a simple attribution to a quote.

<blockquote id="quote">

No book can ever be finished. While working on it we learn

just enough to find it immature the moment we turn away

from it.

</blockquote >

213

<script >

function elt(type) {

var node = document.createElement(type);

for (var i = 1; i < arguments.length; i++) {

var child = arguments[i];

if (typeof child == "string ")

child = document.createTextNode(child);

node.appendChild(child);

}

return node;

}

document.getElementById (" quote ").appendChild(

elt(" footer", ---"",

elt(" strong", "Karl Popper "),

", preface to the second editon of ",

elt("em", "The Open Society and Its Enemies "),

", 1950"));

</script >

This is what the resulting document looks like:

Attributes
Some element attributes, such as href for links, can be accessed through a
property of the same name on the element’s DOM object. This is the case for
a limited set of commonly used standard attributes.

But HTML allows you to set any attribute you want on nodes. This can be
useful because it allows you to store extra information in a document. If you
make up your own attribute names, though, such attributes will not be present
as a property on the element’s node. Instead, you’ll have to use the getAttribute

and setAttribute methods to work with them.

<p data -classified =" secret">The launch code is 00000000. </p>

<p data -classified =" unclassified">I have two feet.</p>

214

<script >

var paras = document.body.getElementsByTagName ("p");

Array.prototype.forEach.call(paras , function(para) {

if (para.getAttribute ("data -classified ") == "secret ")

para.parentNode.removeChild(para);

});

</script >

I recommended prefixing the names of such made-up attributes with data- to
ensure they do not conflict with any other attributes.

As a simple example, we’ll write a “syntax highlighter” that looks for <pre>

tags (“preformatted”, used for code and similar plaintext) with a data-language

attribute and crudely tries to highlight the keywords for that language.

function highlightCode(node , keywords) {

var text = node.textContent;

node.textContent = ""; // Clear the node

var match , pos = 0;

while (match = keywords.exec(text)) {

var before = text.slice(pos , match.index);

node.appendChild(document.createTextNode(before));

var strong = document.createElement (" strong ");

strong.appendChild(document.createTextNode(match [0]));

node.appendChild(strong);

pos = keywords.lastIndex;

}

var after = text.slice(pos);

node.appendChild(document.createTextNode(after));

}

The function highlightCode takes a <pre> node and a regular expression (with
the “global” option turned on) that matches the keywords of the programming
language that the element contains.

The textContent property is used to get all the text in the node and is then
set to an empty string, which has the effect of emptying the node. We loop
over all matches of the keyword expression, appending the text between them as
regular text nodes, and the text matched (the keywords) as text nodes wrapped
in (bold) elements.

We can automatically highlight all programs on the page by looping over all
the <pre> elements that have a data-language attribute and calling highlightCode

on each one with the correct regular expression for the language.

215

var languages = {

javascript: /\b(function|return|var)\b/g /* ... etc */

};

function highlightAllCode () {

var pres = document.body.getElementsByTagName ("pre");

for (var i = 0; i < pres.length; i++) {

var pre = pres[i];

var lang = pre.getAttribute ("data -language ");

if (languages.hasOwnProperty(lang))

highlightCode(pre , languages[lang]);

}

}

Here is an example:

<p>Here it is, the identity function:</p>

<pre data -language =" javascript">

function id(x) { return x; }

</pre >

<script >highlightAllCode ();</script >

This produces a page that looks like this:

There is one commonly used attribute, class, which is a reserved word in the
JavaScript language. For historical reasons—some old JavaScript implementa-
tions could not handle property names that matched keywords or reserved
words—the property used to access this attribute is called className. You
can also access it under its real name, "class", by using the getAttribute and
setAttribute methods.

Layout
You might have noticed that different types of elements are laid out differently.
Some, such as paragraphs (<p>) or headings (<h1>), take up the whole width
of the document and are rendered on separate lines. These are called block
elements. Others, such as links (<a>) or the element used in the previous
example, are rendered on the same line with their surrounding text. Such

216

elements are called inline elements.
For any given document, browsers are able to compute a layout, which gives

each element a size and position based on its type and content. This layout is
then used to actually draw the document.

The size and position of an element can be accessed from JavaScript. The
offsetWidth and offsetHeight properties give you the space the element takes
up in pixels. A pixel is the basic unit of measurement in the browser and
typically corresponds to the smallest dot that your screen can display. Similarly,
clientWidth and clientHeight give you the size of the space inside the element,
ignoring border width.

<p style=" border: 3px solid red">

I ' m boxed in

</p>

<script >

var para = document.body.getElementsByTagName ("p")[0];

console.log(" clientHeight :", para.clientHeight);

console.log(" offsetHeight :", para.offsetHeight);

</script >

Giving a paragraph a border causes a rectangle to be drawn around it.

The most effective way to find the precise position of an element on the screen
is the getBoundingClientRect method. It returns an object with top, bottom, left,
and right properties, indicating the pixel positions of the sides of the element
relative to the top left of the screen. If you want them relative to the whole
document, you must add the current scroll position, found under the global
pageXOffset and pageYOffset variables.

Laying out a document can be quite a lot of work. In the interest of speed,
browser engines do not immediately re-layout a document every time it is
changed but rather wait as long as they can. When a JavaScript program that
changed the document finishes running, the browser will have to compute a
new layout in order to display the changed document on the screen. When a
program asks for the position or size of something by reading properties such as
offsetHeight or calling getBoundingClientRect, providing correct information also
requires computing a layout.

A program that repeatedly alternates between reading DOM layout infor-
mation and changing the DOM forces a lot of layouts to happen and will
consequently run really slowly. The following code shows an example of this.

217

It contains two different programs that build up a line of X characters 2,000
pixels wide and measures the time each one takes.

<p></p>

<p></p>

<script >

function time(name , action) {

var start = Date.now(); // Current time in milliseconds

action ();

console.log(name , "took", Date.now() - start , "ms");

}

time("naive", function () {

var target = document.getElementById ("one");

while (target.offsetWidth < 2000)

target.appendChild(document.createTextNode ("X"));

});

// → naive took 32 ms

time(" clever", function () {

var target = document.getElementById ("two");

target.appendChild(document.createTextNode ("XXXXX"));

var total = Math.ceil (2000 / (target.offsetWidth / 5));

for (var i = 5; i < total; i++)

target.appendChild(document.createTextNode ("X"));

});

// → clever took 1 ms

</script >

Styling
We have seen that different HTML elements display different behavior. Some
are displayed as blocks, others inline. Some add styling, such as making
its content bold and <a> making it blue and underlining it.

The way an tag shows an image or an <a> tag causes a link to be followed
when it is clicked is strongly tied to the element type. But the default styling
associated with an element, such as the text color or underline, can be changed
by us. Here is an example using the style property:

<p> Normal link </p>

<p>Green link </p>

218

The second link will be green instead of the default link color.

A style attribute may contain one or more declarations, which are a property
(such as color) followed by a colon and a value (such as green). When there
is more than one declaration, they must be separated by semicolons, as in
"color: red; border: none".

There are a lot of aspects that can be influenced by styling. For example,
the display property controls whether an element is displayed as a block or an
inline element.

This text is displayed inline ,

<strong style=" display: block">as a block , and

<strong style=" display: none">not at all .

The block tag will end up on its own line since block elements are not displayed
inline with the text around them. The last tag is not displayed at all—display:

none prevents an element from showing up on the screen. This is a way to hide
elements. It is often preferable to removing them from the document entirely
because it makes it easy to reveal them again at a later time.

JavaScript code can directly manipulate the style of an element through the
node’s style property. This property holds an object that has properties for all
possible style properties. The values of these properties are strings, which we
can write to in order to change a particular aspect of the element’s style.

<p id="para" style="color: purple">

Pretty text

</p>

<script >

var para = document.getElementById ("para");

console.log(para.style.color);

para.style.color = "magenta ";

</script >

219

Some style property names contain dashes, such as font-family. Because such
property names are awkward to work with in JavaScript (you’d have to say
style["font-family"]), the property names in the style object for such properties
have their dashes removed and the letters that follow them capitalized (style.
fontFamily).

Cascading styles
The styling system for HTML is called CSS for Cascading Style Sheets. A style
sheet is a set of rules for how to style elements in a document. It can be given
inside a <style> tag.

<style >

strong {

font -style: italic;

color: gray;

}

</style >

<p>Now strong text is italic and gray.</p>

The cascading in the name refers to the fact that multiple such rules are com-
bined to produce the final style for an element. In the previous example, the
default styling for tags, which gives them font-weight: bold, is overlaid
by the rule in the <style> tag, which adds font-style and color.

When multiple rules define a value for the same property, the most recently
read rule gets a higher precedence and wins. So if the rule in the <style> tag
included font-weight: normal, conflicting with the default font-weight rule, the
text would be normal, not bold. Styles in a style attribute applied directly to
the node have the highest precedence and always win.

It is possible to target things other than tag names in CSS rules. A rule for
.abc applies to all elements with "abc" in their class attributes. A rule for \#xyz

applies to the element with an id attribute of "xyz" (which should be unique
within the document).

.subtle {

color: gray;

font -size: 80%;

}

#header {

background: blue;

color: white;

}

220

/* p elements , with classes a and b, and id main */

p.a.b#main {

margin -bottom: 20px;

}

The precedence rule favoring the most recently defined rule holds true only
when the rules have the same specificity. A rule’s specificity is a measure of
how precisely it describes matching elements, determined by the number and
kind (tag, class, or ID) of element aspects it requires. For example, a rule that
targets p.a is more specific than rules that target p or just .a, and would thus
take precedence over them.

The notation p > a ...{} applies the given styles to all <a> tags that are direct
children of <p> tags. Similarly, p a ...{} applies to all <a> tags inside <p> tags,
whether they are direct or indirect children.

Query selectors
We won’t be using style sheets all that much in this book. Although under-
standing them is crucial to programming in the browser, properly explaining all
the properties they support and the interaction among those properties would
take two or three books.

The main reason I introduced selector syntax—the notation used in
style sheets to determine which elements a set of styles apply to—is that we
can use this same mini-language as an effective way to find DOM elements.

The querySelectorAll method, which is defined both on the document object
and on element nodes, takes a selector string and returns an array-like object
containing all the elements that it matches.

<p>And if you go chasing

rabbits </p>

<p>And you know you ' re going to fall </p>

<p>Tell ' em a hookah smoking

caterpillar </p>

<p>Has given you the call </p>

<script >

function count(selector) {

return document.querySelectorAll(selector).length;

}

console.log(count("p")); // All <p> elements

// → 4

console.log(count (". animal ")); // Class animal

221

// → 2

console.log(count("p .animal ")); // Animal inside of <p>

// → 2

console.log(count("p > .animal ")); // Direct child of <p>

// → 1

</script >

Unlike methods such as getElementsByTagName, the object returned by querySelectorAll

is not live. It won’t change when you change the document.
The querySelector method (without the All part) works in a similar way. This

one is useful if you want a specific, single element. It will return only the first
matching element or null if no elements match.

Positioning and animating
The position style property influences layout in a powerful way. By default it has
a value of static, meaning the element sits in its normal place in the document.
When it is set to relative, the element still takes up space in the document,
but now the top and left style properties can be used to move it relative to its
normal place. When position is set to absolute, the element is removed from the
normal document flow—that is, it no longer takes up space and may overlap
with other elements. Also, its top and left properties can be used to absolutely
position it relative to the top-left corner of the nearest enclosing element whose
position property isn’t static, or relative to the document if no such enclosing
element exists.

We can use this to create an animation. The following document displays a
picture of a cat that floats around in an ellipse:

<p style="text -align: center">

</p>

<script >

var cat = document.querySelector ("img");

var angle = 0, lastTime = null;

function animate(time) {

if (lastTime != null)

angle += (time - lastTime) * 0.001;

lastTime = time;

cat.style.top = (Math.sin(angle) * 20) + "px";

cat.style.left = (Math.cos(angle) * 200) + "px";

requestAnimationFrame(animate);

}

requestAnimationFrame(animate);

222

</script >

The gray arrow shows the path along which the image moves.

The picture is centered on the page and given a position of relative. We’ll
repeatedly update that picture’s top and left styles in order to move it.

The script uses requestAnimationFrame to schedule the animate function to run
whenever the browser is ready to repaint the screen. The animate function itself
again calls requestAnimationFrame to schedule the next update. When the browser
window (or tab) is active, this will cause updates to happen at a rate of about
60 per second, which tends to produce a good-looking animation.

If we just updated the DOM in a loop, the page would freeze and nothing
would show up on the screen. Browsers do not update their display while a
JavaScript program is running, nor do they allow any interaction with the page.
This is why we need requestAnimationFrame—it lets the browser know that we are
done for now, and it can go ahead and do the things that browsers do, such as
updating the screen and responding to user actions.

Our animation function is passed the current time as an argument, which it
compares to the time it saw before (the lastTime variable) to ensure the motion
of the cat per millisecond is stable, and the animation moves smoothly. If it
just moved a fixed amount per step, the motion would stutter if, for example,
another heavy task running on the same computer were to prevent the function
from running for a fraction of a second.

Moving in circles is done using the trigonometry functions Math.cos and Math.

sin. For those of you who aren’t familiar with these, I’ll briefly introduce them
since we will occasionally need them in this book.

Math.cos and Math.sin are useful for finding points that lie on a circle around
point (0,0) with a radius of one unit. Both functions interpret their argument
as the position on this circle, with zero denoting the point on the far right
of the circle, going clockwise until 2π (about 6.28) has taken us around the
whole circle. Math.cos tells you the x-coordinate of the point that corresponds
to the given position around the circle, while Math.sin yields the y-coordinate.
Positions (or angles) greater than 2π or less than 0 are valid—the rotation

223

repeats so that a+2π refers to the same angle as a.

cos(¼π)

sin(¼π)

cos(-⅔π)

sin(-⅔π)

The cat animation code keeps a counter, angle, for the current angle of the
animation and increments it in proportion to the elapsed time every time the
animate function is called. It can then use this angle to compute the current
position of the image element. The top style is computed with Math.sin and
multiplied by 20, which is the vertical radius of our circle. The left style is
based on Math.cos and multiplied by 200 so that the circle is much wider than
it is high, resulting in an elliptic motion.

Note that styles usually need units. In this case, we have to append "px"

to the number to tell the browser we are counting in pixels (as opposed to
centimeters, “ems”, or other units). This is easy to forget. Using numbers
without units will result in your style being ignored—unless the number is 0,
which always means the same thing, regardless of its unit.

Summary
JavaScript programs may inspect and interfere with the current document that
a browser is displaying through a data structure called the DOM. This data
structure represents the browser’s model of the document, and a JavaScript
program can modify it to change the visible document.

The DOM is organized like a tree, in which elements are arranged hierar-
chically according to the structure of the document. The objects representing
elements have properties such as parentNode and childNodes, which can be used
to navigate through this tree.

The way a document is displayed can be influenced by styling, both by at-
taching styles to nodes directly and by defining rules that match certain nodes.
There are many different style properties, such as color or display. JavaScript
can manipulate an element’s style directly through its style property.

224

Exercises
Build a table
We built plaintext tables in Chapter 6. HTML makes laying out tables quite
a bit easier. An HTML table is built with the following tag structure:

<table >

<tr >

<th>name </th>

<th>height </th>

<th>country </th>

</tr>

<tr >

<td>Kilimanjaro </td>

<td >5895 </td>

<td>Tanzania </td>

</tr>

</table >

For each row, the <table> tag contains a <tr> tag. Inside of these <tr> tags, we
can put cell elements: either heading cells (<th>) or regular cells (<td>).

The same source data that was used in Chapter 6 is again available in the
MOUNTAINS variable in the sandbox. It can also be downloaded from the web-
site(eloquentjavascript.net/2nd_edition/code#13).

Write a function buildTable that, given an array of objects that all have the
same set of properties, builds up a DOM structure representing a table. The
table should have a header row with the property names wrapped in <th> el-
ements and should have one subsequent row per object in the array, with its
property values in <td> elements.

The Object.keys function, which returns an array containing the property
names that an object has, will probably be helpful here.

Once you have the basics working, right-align cells containing numbers by
setting their style.textAlign property to "right".

Elements by tag name
The getElementsByTagName method returns all child elements with a given tag
name. Implement your own version of it as a regular nonmethod function that
takes a node and a string (the tag name) as arguments and returns an array
containing all descendant element nodes with the given tag name.

To find the tag name of an element, use its tagName property. But note that
this will return the tag name in all uppercase. Use the toLowerCase or toUpperCase

225

http://eloquentjavascript.net/2nd_{}edition/code/mountains.js
http://eloquentjavascript.net/2nd_{}edition/code#{}13

string method to compensate for this.

The cat’s hat
Extend the cat animation defined earlier so that both the cat and his hat
() orbit at opposite sides of the ellipse.

Or make the hat circle around the cat. Or alter the animation in some other
interesting way.

To make positioning multiple objects easier, it is probably a good idea to
switch to absolute positioning. This means that top and left are counted rela-
tive to the top left of the document. To avoid using negative coordinates, you
can simply add a fixed number of pixels to the position values.

226

“You have power over your mind—not outside events. Realize this,
and you will find strength.”

—Marcus Aurelius, Meditations

14 Handling Events
Some programs work with direct user input, such as mouse and keyboard in-
teraction. The timing and order of such input can’t be predicted in advance.
This requires a different approach to control flow than the one we have used
so far.

Event handlers
Imagine an interface where the only way to find out whether a key on the
keyboard is being pressed is to read the current state of that key. To be able
to react to keypresses, you would have to constantly read the key’s state so
that you’d catch it before it’s released again. It would be dangerous to perform
other time-intensive computations since you might miss a keypress.

That is how such input was handled on primitive machines. A step up would
be for the hardware or operating system to notice the keypress and put it in
a queue. A program can then periodically check the queue for new events and
react to what it finds there.

Of course, it has to remember to look at the queue, and to do it often, because
any time between the key being pressed and the program noticing the event
will cause the software to feel unresponsive. This approach is called polling.
Most programmers avoid it whenever possible.

A better mechanism is for the underlying system to give our code a chance
to react to events as they occur. Browsers do this by allowing us to register
functions as handlers for specific events.

<p>Click this document to activate the handler.</p>

<script >

addEventListener ("click", function () {

console.log("You clicked !");

});

</script >

The addEventListener function registers its second argument to be called when-
ever the event described by its first argument occurs.

227

Events and DOM nodes
Each browser event handler is registered in a context. When you call addEventListener
as shown previously, you are calling it as a method on the whole window be-
cause in the browser the global scope is equivalent to the window object. Every
DOM element has its own addEventListener method, which allows you to listen
specifically on that element.

<button >Click me </button >

<p>No handler here.</p>

<script >

var button = document.querySelector (" button ");

button.addEventListener (" click", function () {

console.log(" Button clicked .");

});

</script >

The example attaches a handler to the button node. Thus, clicks on the button
cause that handler to run, whereas clicks on the rest of the document do not.

Giving a node an onclick attribute has a similar effect. But a node has only
one onclick attribute, so you can register only one handler per node that way.
The addEventListener method allows you to add any number of handlers, so you
can’t accidentally replace a handler that has already been registered.

The removeEventListenermethod, called with arguments similar to as addEventListener
, removes a handler.

<button >Act -once button </button >

<script >

var button = document.querySelector (" button ");

function once() {

console.log("Done .");

button.removeEventListener ("click", once);

}

button.addEventListener (" click", once);

</script >

To be able to unregister a handler function, we give it a name (such as once) so
that we can pass it to both addEventListener and removeEventListener.

Event objects
Though we have ignored it in the previous examples, event handler functions
are passed an argument: the event object. This object gives us additional

228

information about the event. For example, if we want to know which mouse
button was pressed, we can look at the event object’s which property.

<button >Click me any way you want </button >

<script >

var button = document.querySelector (" button ");

button.addEventListener (" mousedown", function(event) {

if (event.which == 1)

console.log("Left button ");

else if (event.which == 2)

console.log(" Middle button ");

else if (event.which == 3)

console.log("Right button ");

});

</script >

The information stored in an event object differs per type of event. We’ll
discuss various types later in this chapter. The object’s type property always
holds a string identifying the event (for example "click" or "mousedown").

Propagation
Event handlers registered on nodes with children will also receive some events
that happen in the children. If a button inside a paragraph is clicked, event
handlers on the paragraph will also receive the click event.

But if both the paragraph and the button have a handler, the more specific
handler—the one on the button—gets to go first. The event is said to propagate
outward, from the node where it happened to that node’s parent node and on
to the root of the document. Finally, after all handlers registered on a specific
node have had their turn, handlers registered on the whole window get a chance
to respond to the event.

At any point, an event handler can call the stopPropagation method on the
event object to prevent handlers “further up” from receiving the event. This
can be useful when, for example, you have a button inside another clickable
element and you don’t want clicks on the button to activate the outer element’s
click behavior.

The following example registers "mousedown" handlers on both a button and the
paragraph around it. When clicked with the right mouse button, the handler for
the button calls stopPropagation, which will prevent the handler on the paragraph
from running. When the button is clicked with another mouse button, both
handlers will run.

229

<p>A paragraph with a <button >button </button >.</p>

<script >

var para = document.querySelector ("p");

var button = document.querySelector (" button ");

para.addEventListener (" mousedown", function () {

console.log(" Handler for paragraph .");

});

button.addEventListener (" mousedown", function(event) {

console.log(" Handler for button .");

if (event.which == 3)

event.stopPropagation ();

});

</script >

Most event objects have a target property that refers to the node where they
originated. You can use this property to ensure that you’re not accidentally
handling something that propagated up from a node you do not want to handle.

It is also possible to use the target property to cast a wide net for a specific
type of event. For example, if you have a node containing a long list of buttons,
it may be more convenient to register a single click handler on the outer node
and have it use the target property to figure out whether a button was clicked,
rather than register individual handlers on all of the buttons.

<button >A</button >

<button >B</button >

<button >C</button >

<script >

document.body.addEventListener ("click", function(event) {

if (event.target.nodeName == "BUTTON ")

console.log(" Clicked", event.target.textContent);

});

</script >

Default actions
Many events have a default action associated with them. If you click a link,
you will be taken to the link’s target. If you press the down arrow, the browser
will scroll the page down. If you right-click, you’ll get a context menu. And so
on.

For most types of events, the JavaScript event handlers are called before the
default behavior is performed. If the handler doesn’t want the normal behavior
to happen, typically because it has already taken care of handling the event, it

230

can call the preventDefault method on the event object.
This can be used to implement your own keyboard shortcuts or context

menu. It can also be used to obnoxiously interfere with the behavior that users
expect. For example, here is a link that cannot be followed:

MDN

<script >

var link = document.querySelector ("a");

link.addEventListener ("click", function(event) {

console.log("Nope .");

event.preventDefault ();

});

</script >

Try not to do such things unless you have a really good reason to. For people
using your page, it can be unpleasant when the behavior they expect is broken.

Depending on the browser, some events can’t be intercepted. On Chrome, for
example, keyboard shortcuts to close the current tab (Ctrl-W or Command-W)
cannot be handled by JavaScript.

Key events
When a key on the keyboard is pressed, your browser fires a "keydown" event.
When it is released, a "keyup" event fires.

<p>This page turns violet when you hold the V key.</p>

<script >

addEventListener (" keydown", function(event) {

if (event.keyCode == 86)

document.body.style.background = "violet ";

});

addEventListener ("keyup", function(event) {

if (event.keyCode == 86)

document.body.style.background = "";

});

</script >

Despite its name, "keydown" fires not only when the key is physically pushed
down. When a key is pressed and held, the event fires again every time the key
repeats. Sometimes—for example if you want to increase the acceleration of a
game character when an arrow key is pressed and decrease it again when the
key is released—you have to be careful not to increase it again every time the
key repeats or you’d end up with unintentionally huge values.

231

The previous example looked at the keyCode property of the event object. This
is how you can identify which key is being pressed or released. Unfortunately,
it’s not always obvious how to translate the numeric key code to an actual key.

For letter and number keys, the associated key code will be the Unicode
character code associated with the (uppercase) letter or number printed on the
key. The charCodeAt method on strings gives us a way to find this code.

console.log(" Violet ". charCodeAt (0));

// → 86

console.log ("1". charCodeAt (0));

// → 49

Other keys have less predictable key codes. The best way to find the codes you
need is usually by experimenting—register a key event handler that logs the
key codes it gets and press the key you are interested in.

Modifier keys such as Shift, Ctrl, Alt, and Meta (Command on Mac) generate
key events just like normal keys. But when looking for key combinations, you
can also find out whether these keys are held down by looking at the shiftKey,
ctrlKey, altKey, and metaKey properties of keyboard and mouse events.

<p>Press Ctrl -Space to continue.</p>

<script >

addEventListener (" keydown", function(event) {

if (event.keyCode == 32 && event.ctrlKey)

console.log(" Continuing !");

});

</script >

The "keydown" and "keyup" events give you information about the physical key
that is being pressed. But what if you are interested in the actual text being
typed? Getting that text from key codes is awkward. Instead, there exists
another event, "keypress", which fires right after "keydown" (and repeated along
with "keydown" when the key is held) but only for keys that produce character
input. The charCode property in the event object contains a code that can be
interpreted as a Unicode character code. We can use the String.fromCharCode

function to turn this code into an actual single-character string.

<p>Focus this page and type something .</p>

<script >

addEventListener (" keypress", function(event) {

console.log(String.fromCharCode(event.charCode));

});

</script >

232

The DOM node where a key event originates depends on the element that has
focus when the key is pressed. Normal nodes cannot have focus (unless you
give them a tabindex attribute), but things such as links, buttons, and form
fields can. We’ll come back to form fields in Chapter 18. When nothing in
particular has focus, document.body acts as the target node of key events.

Mouse clicks
Pressing a mouse button also causes a number of events to fire. The "mousedown

" and "mouseup" events are similar to "keydown" and "keyup" and fire when the
button is pressed and released. These will happen on the DOM nodes that are
immediately below the mouse pointer when the event occurs.

After the "mouseup" event, a "click" event fires on the most specific node that
contained both the press and the release of the button. For example, if I press
down the mouse button on one paragraph and then move the pointer to another
paragraph and release the button, the "click" event will happen on the element
that contains both those paragraphs.

If two clicks happen close together, a "dblclick" (double-click) event also fires,
after the second click event.

To get precise information about the place where a mouse event happened,
you can look at its pageX and pageY properties, which contain the event’s coor-
dinates (in pixels) relative to the top-left corner of the document.

The following implements a primitive drawing program. Every time you click
the document, it adds a dot under your mouse pointer. See Chapter 19 for a
less primitive drawing program.

<style >

body {

height: 200px;

background: beige;

}

.dot {

height: 8px; width: 8px;

border -radius: 4px; /* rounds corners */

background: blue;

position: absolute;

}

</style >

<script >

addEventListener ("click", function(event) {

var dot = document.createElement ("div");

dot.className = "dot";

233

dot.style.left = (event.pageX - 4) + "px";

dot.style.top = (event.pageY - 4) + "px";

document.body.appendChild(dot);

});

</script >

The clientX and clientY properties are similar to pageX and pageY but relative
to the part of the document that is currently scrolled into view. These can
be useful when comparing mouse coordinates with the coordinates returned by
getBoundingClientRect, which also returns viewport-relative coordinates.

Mouse motion
Every time the mouse pointer moves, a "mousemove" event fires. This event can
be used to track the position of the mouse. A common situation in which this
is useful is when implementing some form of mouse-dragging functionality.

As an example, the following program displays a bar and sets up event han-
dlers so that dragging to the left or right on this bar makes it narrower or
wider:

<p>Drag the bar to change its width:</p>

<div style=" background: orange; width: 60px; height: 20px">

</div >

<script >

var lastX; // Tracks the last observed mouse X position

var rect = document.querySelector ("div");

rect.addEventListener (" mousedown", function(event) {

if (event.which == 1) {

lastX = event.pageX;

addEventListener (" mousemove", moved);

event.preventDefault (); // Prevent selection

}

});

function buttonPressed(event) {

if (event.buttons == null)

return event.which != 0;

else

return event.buttons != 0;

}

function moved(event) {

if (! buttonPressed(event)) {

removeEventListener (" mousemove", moved);

} else {

234

var dist = event.pageX - lastX;

var newWidth = Math.max(10, rect.offsetWidth + dist);

rect.style.width = newWidth + "px";

lastX = event.pageX;

}

}

</script >

The resulting page looks like this:

Note that the "mousemove" handler is registered on the whole window. Even if
the mouse goes outside of the bar during resizing, we still want to update its
size and stop dragging when the mouse is released.

We must stop resizing the bar when the mouse button is released. Unfor-
tunately, not all browsers give "mousemove" events a meaningful which property.
There is a standard property called buttons, which provides similar information,
but that is also not supported on all browsers. Fortunately, all major browsers
support either buttons or which, so the buttonPressed function in the example first
tries buttons, and falls back to which when that isn’t available.

Whenever the mouse pointer enters or leaves a node, a "mouseover" or "mouseout

" event fires. These two events can be used, among other things, to create hover
effects, showing or styling something when the mouse is over a given element.

Unfortunately, creating such an effect is not as simple as starting the effect
on "mouseover" and ending it on "mouseout". When the mouse moves from a node
onto one of its children, "mouseout" fires on the parent node, though the mouse
did not actually leave the node’s extent. To make things worse, these events
propagate just like other events, and thus you will also receive "mouseout" events
when the mouse leaves one of the child nodes of the node on which the handler
is registered.

To work around this problem, we can use the relatedTarget property of the
event objects created for these events. It tells us, in the case of "mouseover", what
element the pointer was over before and, in the case of "mouseout", what element
it is going to. We want to change our hover effect only when the relatedTarget is
outside of our target node. Only in that case does this event actually represent
a crossing over from outside to inside the node (or the other way around).

<p>Hover over this paragraph .</p>

235

<script >

var para = document.querySelector ("p");

function isInside(node , target) {

for (; node != null; node = node.parentNode)

if (node == target) return true;

}

para.addEventListener (" mouseover", function(event) {

if (! isInside(event.relatedTarget , para))

para.style.color = "red";

});

para.addEventListener (" mouseout", function(event) {

if (! isInside(event.relatedTarget , para))

para.style.color = "";

});

</script >

The isInside function follows the given node’s parent links until it either reaches
the top of the document (when node becomes null) or finds the parent we are
looking for.

I should add that a hover effect like this can be much more easily achieved
using the CSS pseudoselector :hover, as the next example shows. But when
your hover effect involves doing something more complicated than changing a
style on the target node, you must use the trick with "mouseover" and "mouseout"

events.

<style >

p:hover { color: red }

</style >

<p>Hover over this paragraph .</p>

Scroll events
Whenever an element is scrolled, a "scroll" event fires on it. This has various
uses, such as knowing what the user is currently looking at (for disabling off-
screen animations or sending spy reports to your evil headquarters) or showing
some indication of progress (by highlighting part of a table of contents or
showing a page number).

The following example draws a progress bar in the top-right corner of the
document and updates it to fill up as you scroll down:

<style >

.progress {

border: 1px solid blue;

236

width: 100px;

position: fixed;

top: 10px; right: 10px;

}

.progress > div {

height: 12px;

background: blue;

width: 0%;

}

body {

height: 2000px;

}

</style >

<div class=" progress"><div ></div ></div >

<p>Scroll me...</p>

<script >

var bar = document.querySelector (". progress div");

addEventListener (" scroll", function () {

var max = document.body.scrollHeight - innerHeight;

var percent = (pageYOffset / max) * 100;

bar.style.width = percent + "%";

});

</script >

Giving an element a position of fixed acts much like an absolute position but
also prevents it from scrolling along with the rest of the document. The effect
is to make our progress bar stay in its corner. Inside it is another element,
which is resized to indicate the current progress. We use %, rather than px, as a
unit when setting the width so that the element is sized relative to the whole
bar.

The global innerHeight variable gives us the height of the window, which we
have to subtract from the total scrollable height—you can’t keep scrolling when
you hit the bottom of the document. (There’s also an innerWidth to go along
with innerHeight.) By dividing pageYOffset, the current scroll position, by the
maximum scroll position and multiplying by 100, we get the percentage for the
progress bar.

Calling preventDefault on a scroll event does not prevent the scrolling from
happening. In fact, the event handler is called only after the scrolling takes
place.

237

Focus events
When an element gains focus, the browser fires a "focus" event on it. When it
loses focus, a "blur" event fires.

Unlike the events discussed earlier, these two events do not propagate. A
handler on a parent element is not notified when a child element gains or loses
focus.

The following example displays help text for the text field that currently has
focus:

<p>Name: <input type="text" data -help="Your full name"></p>

<p>Age: <input type="text" data -help="Age in years"></p>

<p id="help"></p>

<script >

var help = document.querySelector ("# help");

var fields = document.querySelectorAll ("input");

for (var i = 0; i < fields.length; i++) {

fields[i]. addEventListener ("focus", function(event) {

var text = event.target.getAttribute ("data -help");

help.textContent = text;

});

fields[i]. addEventListener ("blur", function(event) {

help.textContent = "";

});

}

</script >

In the following screenshot, the help text for the age field is shown.

The window object will receive "focus" and "blur" events when the user moves
from or to the browser tab or window in which the document is shown.

Load event
When a page finishes loading, the "load" event fires on the window and the
document body objects. This is often used to schedule initialization actions that

238

require the whole document to have been built. Remember that the content
of <script> tags is run immediately when the tag is encountered. This is often
too soon, such as when the script needs to do something with parts of the
document that appear after the <script> tag.

Elements such as images and script tags that load an external file also have
a "load" event that indicates the files they reference were loaded. Like the
focus-related events, loading events do not propagate.

When a page is closed or navigated away from (for example by following
a link), a "beforeunload" event fires. The main use of this event is to prevent
the user from accidentally losing work by closing a document. Preventing the
page from unloading is not, as you might expect, done with the preventDefault

method. Instead, it is done by returning a string from the handler. The string
will be used in a dialog that asks the user if they want to stay on the page or
leave it. This mechanism ensures that a user is able to leave the page, even if
it is running a malicious script that would prefer to keep them there forever in
order to force them to look at dodgy weight loss ads.

Script execution timeline
There are various things that can cause a script to start executing. Reading a
<script> tag is one such thing. An event firing is another. Chapter 13 discussed
the requestAnimationFrame function, which schedules a function to be called before
the next page redraw. That is yet another way in which a script can start
running.

It is important to understand that even though events can fire at any time,
no two scripts in a single document ever run at the same moment. If a script
is already running, event handlers and pieces of code scheduled in other ways
have to wait for their turn. This is the reason why a document will freeze
when a script runs for a long time. The browser cannot react to clicks and
other events inside the document because it can’t run event handlers until the
current script finishes running.

Some programming environments do allow multiple threads of execution to
run at the same time. Doing multiple things at the same time can be used to
make a program faster. But when you have multiple actors touching the same
parts of the system at the same time, thinking about a program becomes at
least an order of magnitude harder.

The fact that JavaScript programs do only one thing at a time makes our
lives easier. For cases where you really do want to do some time-consuming
thing in the background without freezing the page, browsers provide something

239

called web workers. A worker is an isolated JavaScript environment that runs
alongside the main program for a document and can communicate with it only
by sending and receiving messages.

Assume we have the following code in a file called code/squareworker.js:

addEventListener (" message", function(event) {

postMessage(event.data * event.data);

});

Imagine that squaring a number is a heavy, long-running computation that we
want to perform in a background thread. This code spawns a worker, sends it
a few messages, and outputs the responses.

var squareWorker = new Worker ("code/squareworker.js");

squareWorker.addEventListener (" message", function(event) {

console.log("The worker responded :", event.data);

});

squareWorker.postMessage (10);

squareWorker.postMessage (24);

The postMessage function sends a message, which will cause a "message" event
to fire in the receiver. The script that created the worker sends and receives
messages through the Worker object, whereas the worker talks to the script that
created it by sending and listening directly on its global scope—which is a new
global scope, not shared with the original script.

Setting timers
The setTimeout function is similar to requestAnimationFrame. It schedules another
function to be called later. But instead of calling the function at the next
redraw, it waits for a given amount of milliseconds. This page turns from blue
to yellow after two seconds:

<script >

document.body.style.background = "blue";

setTimeout(function () {

document.body.style.background = "yellow ";

}, 2000);

</script >

Sometimes you need to cancel a function you have scheduled. This is done by
storing the value returned by setTimeout and calling clearTimeout on it.

var bombTimer = setTimeout(function () {

240

console.log("BOOM !");

}, 500);

if (Math.random () < 0.5) { // 50% chance

console.log(" Defused .");

clearTimeout(bombTimer);

}

The cancelAnimationFrame function works in the same way as clearTimeout—calling
it on a value returned by requestAnimationFrame will cancel that frame (assuming
it hasn’t already been called).

A similar set of functions, setInterval and clearInterval are used to set timers
that should repeat every X milliseconds.

var ticks = 0;

var clock = setInterval(function () {

console.log("tick", ticks ++);

if (ticks == 10) {

clearInterval(clock);

console.log("stop .");

}

}, 200);

Debouncing
Some types of events have the potential to fire rapidly, many times in a row
(the "mousemove" and "scroll" events, for example). When handling such events,
you must be careful not to do anything too time-consuming or your handler
will take up so much time that interaction with the document starts to feel
slow and choppy.

If you do need to do something nontrivial in such a handler, you can use
setTimeout to make sure you are not doing it too often. This is usually called
debouncing the event. There are several slightly different approaches to this.

In the first example, we want to do something when the user has typed
something, but we don’t want to do it immediately for every key event. When
they are typing quickly, we just want to wait until a pause occurs. Instead
of immediately performing an action in the event handler, we set a timeout
instead. We also clear the previous timeout (if any) so that when events occur
close together (closer than our timeout delay), the timeout from the previous
event will be canceled.

<textarea >Type something here ...</ textarea >

241

<script >

var textarea = document.querySelector (" textarea ");

var timeout;

textarea.addEventListener (" keydown", function () {

clearTimeout(timeout);

timeout = setTimeout(function () {

console.log("You stopped typing .");

}, 500);

});

</script >

Giving an undefined value to clearTimeout or calling it on a timeout that has
already fired has no effect. Thus, we don’t have to be careful about when to
call it, and we simply do so for every event.

We can use a slightly different pattern if we want to space responses so that
they’re separated by at least a certain length of time but want to fire them
during a series of events, not just afterward. For example, we might want to
respond to "mousemove" events by showing the current coordinates of the mouse,
but only every 250 milliseconds.

<script >

function displayCoords(event) {

document.body.textContent =

"Mouse at " + event.pageX + ", " + event.pageY;

}

var scheduled = false , lastEvent;

addEventListener (" mousemove", function(event) {

lastEvent = event;

if (! scheduled) {

scheduled = true;

setTimeout(function () {

scheduled = false;

displayCoords(lastEvent);

}, 250);

}

});

</script >

Summary
Event handlers make it possible to detect and react to events we have no direct
control over. The addEventListener method is used to register such a handler.

242

Each event has a type ("keydown", "focus", and so on) that identifies it. Most
events are called on a specific DOM element and then propagate to that ele-
ment’s ancestors, allowing handlers associated with those elements to handle
them.

When an event handler is called, it is passed an event object with additional
information about the event. This object also has methods that allow us to
stop further propagation (stopPropagation) and prevent the browser’s default
handling of the event (preventDefault).

Pressing a key fires "keydown", "keypress", and "keyup" events. Pressing a mouse
button fires "mousedown", "mouseup", and "click" events. Moving the mouse fires
"mousemove" and possibly "mouseenter" and "mouseout" events.

Scrolling can be detected with the "scroll" event, and focus changes can
be detected with the "focus" and "blur" events. When the document finishes
loading, a "load" event fires on the window.

Only one piece of JavaScript program can run at a time. Thus, event handlers
and other scheduled scripts have to wait until other scripts finish before they
get their turn.

Exercises
Censored keyboard
Between 1928 and 2013, Turkish law forbade the use of the letters Q, W, and
X in official documents. This was part of a wider initiative to stifle Kurdish
culture—those letters occur in the language used by Kurdish people but not in
Istanbul Turkish.

As an exercise in doing ridiculous things with technology, I’m asking you to
program a text field (an <input type="text"> tag) that these letters cannot be
typed into.

(Do not worry about copy and paste and other such loopholes.)

Mouse trail
In JavaScript’s early days, which was the high time of gaudy home pages with
lots of animated images, people came up with some truly inspiring ways to use
the language.

One of these was the “mouse trail”—a series of images that would follow the
mouse pointer as you moved it across the page.

243

In this exercise, I want you to implement a mouse trail. Use absolutely
positioned <div> elements with a fixed size and background color (refer to the
code in the “Mouse Clicks” section for an example). Create a bunch of such
elements and, when the mouse moves, display them in the wake of the mouse
pointer.

There are various possible approaches here. You can make your solution as
simple or as complex as you want. A simple solution to start with is to keep
a fixed number of trail elements and cycle through them, moving the next one
to the mouse’s current position every time a "mousemove" event occurs.

Tabs
A tabbed interface is a common design pattern. It allows you to select an
interface panel by choosing from a number of tabs “sticking out” above an
element.

In this exercise you’ll implement a simple tabbed interface. Write a function,
asTabs, that takes a DOM node and creates a tabbed interface showing the child
elements of that node. It should insert a list of <button> elements at the top of
the node, one for each child element, containing text retrieved from the data

-tabname attribute of the child. All but one of the original children should be
hidden (given a display style of none), and the currently visible node can be
selected by clicking the buttons.

When it works, extend it to also style the currently active button differently.

244

15 Project: A Platform Game
All reality is a game.
—Iain Banks, The Player of Games

My initial fascination with computers, like that of many kids, originated with
computer games. I was drawn into the tiny computer-simulated worlds that
I could manipulate and in which stories (sort of) unfolded—more, I suppose,
because of the way I could project my imagination into them than because of
the possibilities they actually offered.

I wouldn’t wish a career in game programming on anyone. Much like the
music industry, the discrepancy between the many eager young people wanting
to work in it and the actual demand for such people creates a rather unhealthy
environment. But writing games for fun is amusing.

This chapter will walk through the implementation of a simple platform
game. Platform games (or “jump and run” games) are games that expect the
player to move a figure through a world, which is often two-dimensional and
viewed from the side, and do lots of jumping onto and over things.

The game
Our game will be roughly based on Dark Blue (www.lessmilk.com/games/10) by
Thomas Palef. I chose this game because it is both entertaining and minimalist,
and because it can be built without too much code. It looks like this:

245

http://www.lessmilk.com/games/10

The dark box represents the player, whose task is to collect the yellow boxes
(coins) while avoiding the red stuff (lava?). A level is completed when all coins
have been collected.

The player can walk around with the left and right arrow keys and jump
with the up arrow. Jumping is a specialty of this game character. It can reach
several times its own height and is able to change direction in midair. This
may not be entirely realistic, but it helps give the player the feeling of being in
direct control of the onscreen avatar.

The game consists of a fixed background, laid out like a grid, with the moving
elements overlaid on that background. Each field on the grid is either empty,
solid, or lava. The moving elements are the player, coins, and certain pieces of
lava. Unlike the artificial life simulation from Chapter 7, the positions of these
elements are not constrained to the grid—their coordinates may be fractional,
allowing smooth motion.

The technology
We will use the browser DOM to display the game, and we’ll read user input
by handling key events.

The screen- and keyboard-related code is only a tiny part of the work we need
to do to build this game. Since everything looks like colored boxes, drawing
is uncomplicated: we create DOM elements and use styling to give them a
background color, size, and position.

We can represent the background as a table since it is an unchanging grid
of squares. The free-moving elements can be overlaid on top of that, using

246

absolutely positioned elements.
In games and other programs that have to animate graphics and respond

to user input without noticeable delay, efficiency is important. Although the
DOM was not originally designed for high-performance graphics, it is actually
better at this than you would expect. You saw some animations in Chapter
13. On a modern machine, a simple game like this performs well, even if we
don’t think about optimization much.

In the next chapter, we will explore another browser technology, the <canvas>

tag, which provides a more traditional way to draw graphics, working in terms
of shapes and pixels rather than DOM elements.

Levels
In Chapter 7 we used arrays of strings to describe a two-dimensional grid. We
can do the same here. It will allow us to design levels without first building a
level editor.

A simple level would look like this:

var simpleLevelPlan = [

" ",

" ",

" x = x ",

" x o o x ",

" x @ xxxxx x ",

" xxxxx x ",

" x!!!!!!!!!!!!x ",

" xxxxxxxxxxxxxx ",

" "

];

Both the fixed grid and the moving elements are included in the plan. The
x characters stand for walls, the space characters for empty space, and the
exclamation marks represent fixed, nonmoving lava tiles.

The @ defines the place where the player starts. Every o is a coin, and the
equal sign (=) stands for a block of lava that moves back and forth horizontally.
Note that the grid for these positions will be set to contain empty space, and
another data structure is used to track the position of such moving elements.

We’ll support two other kinds of moving lava: the pipe character (|) for
vertically moving blobs, and v for dripping lava—vertically moving lava that
doesn’t bounce back and forth but only moves down, jumping back to its start
position when it hits the floor.

247

A whole game consists of multiple levels that the player must complete. A
level is completed when all coins have been collected. If the player touches
lava, the current level is restored to its starting position, and the player may
try again.

Reading a level
The following constructor builds a level object. Its argument should be the
array of strings that define the level.

function Level(plan) {

this.width = plan [0]. length;

this.height = plan.length;

this.grid = [];

this.actors = [];

for (var y = 0; y < this.height; y++) {

var line = plan[y], gridLine = [];

for (var x = 0; x < this.width; x++) {

var ch = line[x], fieldType = null;

var Actor = actorChars[ch];

if (Actor)

this.actors.push(new Actor(new Vector(x, y), ch));

else if (ch == "x")

fieldType = "wall";

else if (ch == "!")

fieldType = "lava";

gridLine.push(fieldType);

}

this.grid.push(gridLine);

}

this.player = this.actors.filter(function(actor) {

return actor.type == "player ";

})[0];

this.status = this.finishDelay = null;

}

For brevity, the code does not check for malformed input. It assumes that
you’ve given it a proper level plan, complete with a player start position and
other essentials.

A level stores its width and height, along with two arrays—one for the grid
and one for the actors, which are the dynamic elements. The grid is represented
as an array of arrays, where each of the inner arrays represents a horizontal line

248

and each square contains either null, for empty squares, or a string indicating
the type of the square—"wall" or "lava".

The actors array holds objects that track the current position and state of
the dynamic elements in the level. Each of these is expected to have a pos

property that gives its position (the coordinates of its top-left corner), a size

property that gives its size, and a type property that holds a string identifying
the element ("lava", "coin", or "player").

After building the grid, we use the filter method to find the player actor
object, which we store in a property of the level. The status property tracks
whether the player has won or lost. When this happens, finishDelay is used to
keep the level active for a short period of time so that a simple animation can
be shown. (Immediately resetting or advancing the level would look cheap.)
This method can be used to find out whether a level is finished:

Level.prototype.isFinished = function () {

return this.status != null && this.finishDelay < 0;

};

Actors
To store the position and size of an actor, we will return to our trusty Vector

type, which groups an x-coordinate and a y-coordinate into an object.

function Vector(x, y) {

this.x = x; this.y = y;

}

Vector.prototype.plus = function(other) {

return new Vector(this.x + other.x, this.y + other.y);

};

Vector.prototype.times = function(factor) {

return new Vector(this.x * factor , this.y * factor);

};

The times method scales a vector by a given amount. It will be useful when we
need to multiply a speed vector by a time interval to get the distance traveled
during that time.

In the previous section, the actorChars object was used by the Level constructor
to associate characters with constructor functions. The object looks like this:

var actorChars = {

"@": Player ,

"o": Coin ,

249

"=": Lava , "|": Lava , "v": Lava

};

Three characters map to Lava. The Level constructor passes the actor’s source
character as the second argument to the constructor, and the Lava constructor
uses that to adjust its behavior (bouncing horizontally, bouncing vertically, or
dripping).

The player type is built with the following constructor. It has a property
speed that stores its current speed, which will help simulate momentum and
gravity.

function Player(pos) {

this.pos = pos.plus(new Vector(0, -0.5));

this.size = new Vector (0.8, 1.5);

this.speed = new Vector(0, 0);

}

Player.prototype.type = "player ";

Because a player is one-and-a-half squares high, its initial position is set to be
half a square above the position where the @ character appeared. This way, its
bottom aligns with the bottom of the square it appeared in.

When constructing a dynamic Lava object, we need to initialize the object
differently depending on the character it is based on. Dynamic lava moves
along at its given speed until it hits an obstacle. At that point, if it has a
repeatPos property, it will jump back to its start position (dripping). If it does
not, it will invert its speed and continue in the other direction (bouncing). The
constructor only sets up the necessary properties. The method that does the
actual moving will be written later.

function Lava(pos , ch) {

this.pos = pos;

this.size = new Vector(1, 1);

if (ch == "=") {

this.speed = new Vector(2, 0);

} else if (ch == "|") {

this.speed = new Vector(0, 2);

} else if (ch == "v") {

this.speed = new Vector(0, 3);

this.repeatPos = pos;

}

}

Lava.prototype.type = "lava";

Coin actors are simple. They mostly just sit in their place. But to liven up the

250

game a little, they are given a “wobble”, a slight vertical motion back and forth.
To track this, a coin object stores a base position as well as a wobble property
that tracks the phase of the bouncing motion. Together, these determine the
coin’s actual position (stored in the pos property).

function Coin(pos) {

this.basePos = this.pos = pos.plus(new Vector (0.2, 0.1));

this.size = new Vector (0.6, 0.6);

this.wobble = Math.random () * Math.PI * 2;

}

Coin.prototype.type = "coin";

In Chapter 13, we saw that Math.sin gives us the y-coordinate of a point on
a circle. That coordinate goes back and forth in a smooth wave form as we
move along the circle, which makes the sine function useful for modeling a wavy
motion.

To avoid a situation where all coins move up and down synchronously, the
starting phase of each coin is randomized. The phase of Math.sin’s wave, the
width of a wave it produces, is 2π. We multiply the value returned by Math.random

by that number to give the coin a random starting position on the wave.
We have now written all the parts needed to represent the state of a level.

var simpleLevel = new Level(simpleLevelPlan);

console.log(simpleLevel.width , "by", simpleLevel.height);

// → 22 by 9

The task ahead is to display such levels on the screen and to model time and
motion inside them.

Encapsulation as a burden
Most of the code in this chapter does not worry about encapsulation for two
reasons. First, encapsulation takes extra effort. It makes programs bigger and
requires additional concepts and interfaces to be introduced. Since there is
only so much code you can throw at a reader before their eyes glaze over, I’ve
made an effort to keep the program small.

Second, the various elements in this game are so closely tied together that
if the behavior of one of them changed, it is unlikely that any of the others
would be able to stay the same. Interfaces between the elements would end
up encoding a lot of assumptions about the way the game works. This makes
them a lot less effective—whenever you change one part of the system, you still
have to worry about the way it impacts the other parts because their interfaces

251

wouldn’t cover the new situation.
Some cutting points in a system lend themselves well to separation through

rigorous interfaces, but others don’t. Trying to encapsulate something that
isn’t a suitable boundary is a sure way to waste a lot of energy. When you
are making this mistake, you’ll usually notice that your interfaces are getting
awkwardly large and detailed and that they need to be modified often, as the
program evolves.

There is one thing that we will encapsulate in this chapter, and that is the
drawing subsystem. The reason for this is that we will display the same game
in a different way in the next chapter. By putting the drawing behind an
interface, we can simply load the same game program there and plug in a new
display module.

Drawing
The encapsulation of the drawing code is done by defining a display object,
which displays a given level. The display type we define in this chapter is
called DOMDisplay because it uses simple DOM elements to show the level.

We will be using a style sheet to set the actual colors and other fixed prop-
erties of the elements that make up the game. It would also be possible to
directly assign to the elements’ style property when we create them, but that
would produce more verbose programs.

The following helper function provides a short way to create an element and
give it a class:

function elt(name , className) {

var elt = document.createElement(name);

if (className) elt.className = className;

return elt;

}

A display is created by giving it a parent element to which it should append
itself and a level object.

function DOMDisplay(parent , level) {

this.wrap = parent.appendChild(elt("div", "game"));

this.level = level;

this.wrap.appendChild(this.drawBackground ());

this.actorLayer = null;

this.drawFrame ();

}

252

We used the fact that appendChild returns the appended element to create the
wrapper element and store it in the wrap property in a single statement.

The level’s background, which never changes, is drawn once. The actors are
redrawn every time the display is updated. The actorLayer property will be
used by drawFrame to track the element that holds the actors so that they can
be easily removed and replaced.

Our coordinates and sizes are tracked in units relative to the grid size, where
a size or distance of 1 means 1 grid unit. When setting pixel sizes, we will have
to scale these coordinates up—everything in the game would be ridiculously
small at a single pixel per square. The scale variable gives the number of pixels
that a single unit takes up on the screen.

var scale = 20;

DOMDisplay.prototype.drawBackground = function () {

var table = elt("table", "background ");

table.style.width = this.level.width * scale + "px";

this.level.grid.forEach(function(row) {

var rowElt = table.appendChild(elt("tr"));

rowElt.style.height = scale + "px";

row.forEach(function(type) {

rowElt.appendChild(elt("td", type));

});

});

return table;

};

As mentioned earlier, the background is drawn as a <table> element. This nicely
corresponds to the structure of the grid property in the level—each row of the
grid is turned into a table row (<tr> element). The strings in the grid are used
as class names for the table cell (<td>) elements. The following CSS helps the
resulting table look like the background we want:

.background { background: rgb(52, 166, 251);

table -layout: fixed;

border -spacing: 0; }

.background td { padding: 0; }

.lava { background: rgb(255, 100, 100); }

.wall { background: white; }

Some of these (table-layout, border-spacing, and padding) are simply used to sup-
press unwanted default behavior. We don’t want the layout of the table to
depend upon the contents of its cells, and we don’t want space between the
table cells or padding inside them.

253

The background rule sets the background color. CSS allows colors to be spec-
ified both as words (white) and with a format such as rgb(R, G, B), where the
red, green, and blue components of the color are separated into three numbers
from 0 to 255. So, in rgb(52, 166, 251), the red component is 52, green is 166,
and blue is 251. Since the blue component is the largest, the resulting color
will be bluish. You can see that in the .lava rule, the first number (red) is the
largest.

We draw each actor by creating a DOM element for it and setting that
element’s position and size based on the actor’s properties. The values have to
be multiplied by scale to go from game units to pixels.

DOMDisplay.prototype.drawActors = function () {

var wrap = elt("div");

this.level.actors.forEach(function(actor) {

var rect = wrap.appendChild(elt("div",

"actor " + actor.type));

rect.style.width = actor.size.x * scale + "px";

rect.style.height = actor.size.y * scale + "px";

rect.style.left = actor.pos.x * scale + "px";

rect.style.top = actor.pos.y * scale + "px";

});

return wrap;

};

To give an element more than one class, we separate the class names by spaces.
In the CSS code shown next, the actor class gives the actors their absolute
position. Their type name is used as an extra class to give them a color. We
don’t have to define the lava class again because we reuse the class for the lava
grid squares which we defined earlier.

.actor { position: absolute; }

.coin { background: rgb(241, 229, 89); }

.player { background: rgb(64, 64, 64); }

When it updates the display, the drawFrame method first removes the old actor
graphics, if any, and then redraws them in their new positions. It may be
tempting to try to reuse the DOM elements for actors, but to make that work,
we would need a lot of additional information flow between the display code
and the simulation code. We’d need to associate actors with DOM elements,
and the drawing code must remove elements when their actors vanish. Since
there will typically be only a handful of actors in the game, redrawing all of
them is not expensive.

DOMDisplay.prototype.drawFrame = function () {

254

if (this.actorLayer)

this.wrap.removeChild(this.actorLayer);

this.actorLayer = this.wrap.appendChild(this.drawActors ());

this.wrap.className = "game " + (this.level.status || "");

this.scrollPlayerIntoView ();

};

By adding the level’s current status as a class name to the wrapper, we can
style the player actor slightly differently when the game is won or lost by adding
a CSS rule that takes effect only when the player has an ancestor element with
a given class.

.lost .player {

background: rgb(160, 64, 64);

}

.won .player {

box -shadow: -4px -7px 8px white , 4px -7px 8px white;

}

After touching lava, the player’s color turns dark red, suggesting scorching.
When the last coin has been collected, we use two blurred white box shadows,
one to the top left and one to the top right, to create a white halo effect.

We can’t assume that levels always fit in the viewport. That is why the
scrollPlayerIntoView call is needed—it ensures that if the level is protruding
outside the viewport, we scroll that viewport to make sure the player is near
its center. The following CSS gives the game’s wrapping DOM element a
maximum size and ensures that anything that sticks out of the element’s box
is not visible. We also give the outer element a relative position so that the
actors inside it are positioned relative to the level’s top-left corner.

.game {

overflow: hidden;

max -width: 600px;

max -height: 450px;

position: relative;

}

In the scrollPlayerIntoView method, we find the player’s position and update the
wrapping element’s scroll position. We change the scroll position by manipu-
lating that element’s scrollLeft and scrollTop properties when the player is too
close to the edge.

DOMDisplay.prototype.scrollPlayerIntoView = function () {

var width = this.wrap.clientWidth;

var height = this.wrap.clientHeight;

255

var margin = width / 3;

// The viewport

var left = this.wrap.scrollLeft , right = left + width;

var top = this.wrap.scrollTop , bottom = top + height;

var player = this.level.player;

var center = player.pos.plus(player.size.times (0.5))

.times(scale);

if (center.x < left + margin)

this.wrap.scrollLeft = center.x - margin;

else if (center.x > right - margin)

this.wrap.scrollLeft = center.x + margin - width;

if (center.y < top + margin)

this.wrap.scrollTop = center.y - margin;

else if (center.y > bottom - margin)

this.wrap.scrollTop = center.y + margin - height;

};

The way the player’s center is found shows how the methods on our Vector type
allow computations with objects to be written in a readable way. To find the
actor’s center, we add its position (its top-left corner) and half its size. That is
the center in level coordinates, but we need it in pixel coordinates, so we then
multiply the resulting vector by our display scale.

Next, a series of checks verify that the player position isn’t outside of the
allowed range. Note that sometimes this will set nonsense scroll coordinates,
below zero or beyond the element’s scrollable area. This is okay—the DOM
will constrain them to sane values. Setting scrollLeft to -10 will cause it to
become 0.

It would have been slightly simpler to always try to scroll the player to the
center of the viewport. But this creates a rather jarring effect. As you are
jumping, the view will constantly shift up and down. It is more pleasant to
have a “neutral” area in the middle of the screen where you can move around
without causing any scrolling.

Finally, we’ll need a way to clear a displayed level, to be used when the game
moves to the next level or resets a level.

DOMDisplay.prototype.clear = function () {

this.wrap.parentNode.removeChild(this.wrap);

};

We are now able to display our tiny level.

256

<link rel=" stylesheet" href="css/game.css">

<script >

var simpleLevel = new Level(simpleLevelPlan);

var display = new DOMDisplay(document.body , simpleLevel);

</script >

The <link> tag, when used with rel="stylesheet", is a way to load a CSS file into
a page. The file game.css contains the styles necessary for our game.

Motion and collision
Now we’re at the point where we can start adding motion—the most interesting
aspect of the game. The basic approach, taken by most games like this, is to
split time into small steps and, for each step, move the actors by a distance
corresponding to their speed (distance moved per second) multiplied by the
size of the time step (in seconds).

That is easy. The difficult part is dealing with the interactions between the
elements. When the player hits a wall or floor, they should not simply move
through it. The game must notice when a given motion causes an object to
hit another object and respond accordingly. For walls, the motion must be
stopped. For coins, the coin must be collected, and so on.

Solving this for the general case is a big task. You can find libraries, usually
called physics engines, that simulate interaction between physical objects in
two or three dimensions. We’ll take a more modest approach in this chapter,
handling only collisions between rectangular objects and handling them in a
rather simplistic way.

Before moving the player or a block of lava, we test whether the motion
would take it inside of a nonempty part of the background. If it does, we
simply cancel the motion altogether. The response to such a collision depends
on the type of actor—the player will stop, whereas a lava block will bounce
back.

257

This approach requires our time steps to be rather small since it will cause
motion to stop before the objects actually touch. If the time steps (and thus
the motion steps) are too big, the player would end up hovering a noticeable
distance above the ground. Another approach, arguably better but more com-
plicated, would be to find the exact collision spot and move there. We will take
the simple approach and hide its problems by ensuring the animation proceeds
in small steps.

This method tells us whether a rectangle (specified by a position and a size)
overlaps with any nonempty space on the background grid:

Level.prototype.obstacleAt = function(pos , size) {

var xStart = Math.floor(pos.x);

var xEnd = Math.ceil(pos.x + size.x);

var yStart = Math.floor(pos.y);

var yEnd = Math.ceil(pos.y + size.y);

if (xStart < 0 || xEnd > this.width || yStart < 0)

return "wall";

if (yEnd > this.height)

return "lava";

for (var y = yStart; y < yEnd; y++) {

for (var x = xStart; x < xEnd; x++) {

var fieldType = this.grid[y][x];

if (fieldType) return fieldType;

}

}

};

This method computes the set of grid squares that the body overlaps with by
using Math.floor and Math.ceil on the body’s coordinates. Remember that grid
squares are 1×1 units in size. By rounding the sides of a box up and down, we
get the range of background squares that the box touches.

If the body sticks out of the level, we always return "wall" for the sides and top
and "lava" for the bottom. This ensures that the player dies when falling out
of the world. When the body is fully inside the grid, we loop over the block of

258

grid squares found by rounding the coordinates and return the content of the
first nonempty square we find.

Collisions between the player and other dynamic actors (coins, moving lava)
are handled after the player moved. When the motion has taken the player into
another actor, the appropriate effect—collecting a coin or dying—is activated.

This method scans the array of actors, looking for an actor that overlaps the
one given as an argument:

Level.prototype.actorAt = function(actor) {

for (var i = 0; i < this.actors.length; i++) {

var other = this.actors[i];

if (other != actor &&

actor.pos.x + actor.size.x > other.pos.x &&

actor.pos.x < other.pos.x + other.size.x &&

actor.pos.y + actor.size.y > other.pos.y &&

actor.pos.y < other.pos.y + other.size.y)

return other;

}

};

Actors and actions
The animate method on the Level type gives all actors in the level a chance to
move. Its step argument is the time step in seconds. The keys object contains
information about the arrow keys the player has pressed.

var maxStep = 0.05;

Level.prototype.animate = function(step , keys) {

if (this.status != null)

this.finishDelay -= step;

while (step > 0) {

var thisStep = Math.min(step , maxStep);

this.actors.forEach(function(actor) {

actor.act(thisStep , this , keys);

}, this);

step -= thisStep;

}

};

When the level’s status property has a non-null value (which is the case when
the player has won or lost), we must count down the finishDelay property,

259

which tracks the time between the point where winning or losing happens and
the point where we want to stop showing the level.

The while loop cuts the time step we are animating into suitably small pieces.
It ensures that no step larger than maxStep is taken. For example, a step of 0.12
second would be cut into two steps of 0.05 seconds and one step of 0.02.

Actor objects have an act method, which takes as arguments the time step,
the level object, and the keys object. Here is one, for the Lava actor type, which
ignores the keys object:

Lava.prototype.act = function(step , level) {

var newPos = this.pos.plus(this.speed.times(step));

if (!level.obstacleAt(newPos , this.size))

this.pos = newPos;

else if (this.repeatPos)

this.pos = this.repeatPos;

else

this.speed = this.speed.times (-1);

};

It computes a new position by adding the product of the time step and its
current speed to its old position. If no obstacle blocks that new position, it
moves there. If there is an obstacle, the behavior depends on the type of the
lava block—dripping lava has a repeatPos property, to which it jumps back when
it hits something. Bouncing lava simply inverts its speed (multiplies it by -1)
in order to start moving in the other direction.

Coins use their act method to wobble. They ignore collisions since they are
simply wobbling around inside of their own square, and collisions with the
player will be handled by the player’s act method.

var wobbleSpeed = 8, wobbleDist = 0.07;

Coin.prototype.act = function(step) {

this.wobble += step * wobbleSpeed;

var wobblePos = Math.sin(this.wobble) * wobbleDist;

this.pos = this.basePos.plus(new Vector(0, wobblePos));

};

The wobble property is updated to track time and then used as an argument to
Math.sin to create a wave, which is used to compute a new position.

That leaves the player itself. Player motion is handled separately per axis
because hitting the floor should not prevent horizontal motion, and hitting a
wall should not stop falling or jumping motion. This method implements the
horizontal part:

260

var playerXSpeed = 7;

Player.prototype.moveX = function(step , level , keys) {

this.speed.x = 0;

if (keys.left) this.speed.x -= playerXSpeed;

if (keys.right) this.speed.x += playerXSpeed;

var motion = new Vector(this.speed.x * step , 0);

var newPos = this.pos.plus(motion);

var obstacle = level.obstacleAt(newPos , this.size);

if (obstacle)

level.playerTouched(obstacle);

else

this.pos = newPos;

};

The horizontal motion is computed based on the state of the left and right
arrow keys. When a motion causes the player to hit something, the level’s
playerTouched method, which handles things like dying in lava and collecting
coins, is called. Otherwise, the object updates its position.

Vertical motion works in a similar way but has to simulate jumping and
gravity.

var gravity = 30;

var jumpSpeed = 17;

Player.prototype.moveY = function(step , level , keys) {

this.speed.y += step * gravity;

var motion = new Vector(0, this.speed.y * step);

var newPos = this.pos.plus(motion);

var obstacle = level.obstacleAt(newPos , this.size);

if (obstacle) {

level.playerTouched(obstacle);

if (keys.up && this.speed.y > 0)

this.speed.y = -jumpSpeed;

else

this.speed.y = 0;

} else {

this.pos = newPos;

}

};

At the start of the method, the player is accelerated vertically to account for
gravity. The gravity, jumping speed, and pretty much all other constants in
this game have been set by trial and error. I tested various values until I found

261

a combination I liked.
Next, we check for obstacles again. If we hit an obstacle, there are two

possible outcomes. When the up arrow is pressed and we are moving down
(meaning the thing we hit is below us), the speed is set to a relatively large,
negative value. This causes the player to jump. If that is not the case, we
simply bumped into something, and the speed is reset to zero.

The actual act method looks like this:

Player.prototype.act = function(step , level , keys) {

this.moveX(step , level , keys);

this.moveY(step , level , keys);

var otherActor = level.actorAt(this);

if (otherActor)

level.playerTouched(otherActor.type , otherActor);

// Losing animation

if (level.status == "lost") {

this.pos.y += step;

this.size.y -= step;

}

};

After moving, the method checks for other actors that the player is collid-
ing with and again calls playerTouched when it finds one. This time, it passes
the actor object as the second argument because if the other actor is a coin,
playerTouched needs to know which coin is being collected.

Finally, when the player dies (touches lava), we set up a little animation that
causes them to “shrink” or “sink” down by reducing the height of the player
object.

And here is the method that handles collisions between the player and other
objects:

Level.prototype.playerTouched = function(type , actor) {

if (type == "lava" && this.status == null) {

this.status = "lost";

this.finishDelay = 1;

} else if (type == "coin") {

this.actors = this.actors.filter(function(other) {

return other != actor;

});

if (!this.actors.some(function(actor) {

return actor.type == "coin";

})) {

262

this.status = "won";

this.finishDelay = 1;

}

}

};

When lava is touched, the game’s status is set to "lost". When a coin is touched,
that coin is removed from the array of actors, and if it was the last one, the
game’s status is set to "won".

This gives us a level that can actually be animated. All that is missing now
is the code that drives the animation.

Tracking keys
For a game like this, we do not want keys to take effect once per keypress.
Rather, we want their effect (moving the player figure) to continue happening
as long as they are pressed.

We need to set up a key handler that stores the current state of the left,
right, and up arrow keys. We will also want to call preventDefault for those keys
so that they don’t end up scrolling the page.

The following function, when given an object with key codes as property
names and key names as values, will return an object that tracks the current
position of those keys. It registers event handlers for "keydown" and "keyup" events
and, when the key code in the event is present in the set of codes that it is
tracking, updates the object.

var arrowCodes = {37: "left", 38: "up", 39: "right "};

function trackKeys(codes) {

var pressed = Object.create(null);

function handler(event) {

if (codes.hasOwnProperty(event.keyCode)) {

var down = event.type == "keydown ";

pressed[codes[event.keyCode]] = down;

event.preventDefault ();

}

}

addEventListener (" keydown", handler);

addEventListener ("keyup", handler);

return pressed;

}

Note how the same handler function is used for both event types. It looks at

263

the event object’s type property to determine whether the key state should be
updated to true ("keydown") or false ("keyup").

Running the game
The requestAnimationFrame function, which we saw in Chapter 13, provides a good
way to animate a game. But its interface is quite primitive—using it requires
us to track the time at which our function was called the last time around and
call requestAnimationFrame again after every frame.

Let’s define a helper function that wraps those boring parts in a convenient
interface and allows us to simply call runAnimation, giving it a function that
expects a time difference as an argument and draws a single frame. When the
frame function returns the value false, the animation stops.

function runAnimation(frameFunc) {

var lastTime = null;

function frame(time) {

var stop = false;

if (lastTime != null) {

var timeStep = Math.min(time - lastTime , 100) / 1000;

stop = frameFunc(timeStep) === false;

}

lastTime = time;

if (!stop)

requestAnimationFrame(frame);

}

requestAnimationFrame(frame);

}

I have set a maximum frame step of 100 milliseconds (one-tenth of a second).
When the browser tab or window with our page is hidden, requestAnimationFrame
calls will be suspended until the tab or window is shown again. In this case,
the difference between lastTime and time will be the entire time in which the
page was hidden. Advancing the game by that much in a single step will look
silly and might be a lot of work (remember the time-splitting in the animate

method).
The function also converts the time steps to seconds, which are an easier

quantity to think about than milliseconds.
The runLevel function takes a Level object, a constructor for a display, and,

optionally, a function. It displays the level (in document.body) and lets the user
play through it. When the level is finished (lost or won), runLevel clears the
display, stops the animation, and, if an andThen function was given, calls that

264

function with the level’s status.

var arrows = trackKeys(arrowCodes);

function runLevel(level , Display , andThen) {

var display = new Display(document.body , level);

runAnimation(function(step) {

level.animate(step , arrows);

display.drawFrame(step);

if (level.isFinished ()) {

display.clear();

if (andThen)

andThen(level.status);

return false;

}

});

}

A game is a sequence of levels. Whenever the player dies, the current level
is restarted. When a level is completed, we move on to the next level. This
can be expressed by the following function, which takes an array of level plans
(arrays of strings) and a display constructor:

function runGame(plans , Display) {

function startLevel(n) {

runLevel(new Level(plans[n]), Display , function(status) {

if (status == "lost")

startLevel(n);

else if (n < plans.length - 1)

startLevel(n + 1);

else

console.log("You win!");

});

}

startLevel (0);

}

These functions show a peculiar style of programming. Both runAnimation and
runLevel are higher-order functions but are not in the style we saw in Chapter
5. The function argument is used to arrange things to happen at some time in
the future, and neither of the functions returns anything useful. Their task is,
in a way, to schedule actions. Wrapping these actions in functions gives us a
way to store them as a value so that they can be called at the right moment.

This programming style is usually called asynchronous programming. Event
handling is also an instance of this style, and we will see much more of it when

265

working with tasks that can take an arbitrary amount of time, such as network
requests in Chapter 17 and input and output in general in Chapter 20.

There is a set of level plans available in the GAME_LEVELS variable (downloadable
from eloquentjavascript.net/2nd_edition/code#15). This page feeds them to
runGame, starting an actual game:

<link rel=" stylesheet" href="css/game.css">

<body >

<script >

runGame(GAME_LEVELS , DOMDisplay);

</script >

</body >

Exercises
Game over
It’s traditional for platform games to have the player start with a limited num-
ber of lives and subtract one life each time they die. When the player is out of
lives, the game restarts from the beginning.

Adjust runGame to implement lives. Have the player start with three.

Pausing the game
Make it possible to pause (suspend) and unpause the game by pressing the Esc
key.

This can be done by changing the runLevel function to use another keyboard
event handler and interrupting or resuming the animation whenever the Esc
key is hit.

The runAnimation interface may not look like it is suitable for this at first
glance, but it is, if you rearrange the way runLevel calls it.

When you have that working, there is something else you could try. The way
we have been registering keyboard event handlers is somewhat problematic.
The arrows object is currently a global variable, and its event handlers are kept
around even when no game is running. You could say they leak out of our
system. Extend trackKeys to provide a way to unregister its handlers, and then
change runLevel to register its handlers when it starts and unregister them again
when it is finished.

266

http://eloquentjavascript.net/2nd_{}edition/code#{}15

“Drawing is deception.”
—M.C. Escher, cited by Bruno Ernst in The Magic Mirror of M.C.

Escher

16 Drawing on Canvas
Browsers give us several ways to display graphics. The simplest way is to use
styles to position and color regular DOM elements. This can get you quite far,
as the game in the previous chapter showed. By adding partially transparent
background images to the nodes, we can make them look exactly the way we
want. It is even possible to rotate or skew nodes by using the transform style.

But we’d be using the DOM for something that it wasn’t originally designed
for. Some tasks, such as drawing a line between arbitrary points, are extremely
awkward to do with regular HTML elements.

There are two alternatives. The first is DOM-based but utilizes Scalable
Vector Graphics (SVG), rather than HTML elements. Think of SVG as a
dialect for describing documents that focuses on shapes rather than text. You
can embed an SVG document in an HTML document, or you can include it
through an tag.

The second alternative is called a canvas. A canvas is a single DOM element
that encapsulates a picture. It provides a programming interface for drawing
shapes onto the space taken up by the node. The main difference between a
canvas and an SVG picture is that in SVG the original description of the shapes
is preserved so that they can be moved or resized at any time. A canvas, on
the other hand, converts the shapes to pixels (colored dots on a raster) as soon
as they are drawn and does not remember what these pixels represent. The
only way to move a shape on a canvas is to clear the canvas (or the part of the
canvas around the shape) and redraw it with the shape in a new position.

SVG
This book will not go into SVG in detail, but I will briefly explain how it
works. At the end of the chapter, I’ll come back to the trade-offs that you
must consider when deciding which drawing mechanism is appropriate for a
given application.

This is an HTML document with a simple SVG picture in it:

<p>Normal HTML here.</p>

<svg xmlns="http ://www.w3.org /2000/ svg">

267

<circle r="50" cx="50" cy ="50" fill="red"/>

<rect x="120" y="5" width ="90" height ="90"

stroke ="blue" fill="none"/>

</svg >

The xmlns attribute changes an element (and its children) to a different XML
namespace. This namespace, identified by a URL, specifies the dialect that
we are currently speaking. The <circle> and <rect> tags, which do not exist
in HTML, do have a meaning in SVG—they draw shapes using the style and
position specified by their attributes.

The document is displayed like this:

These tags create DOM elements, just like HTML tags. For example, this
changes the <circle> element to be colored cyan instead:

var circle = document.querySelector (" circle ");

circle.setAttribute ("fill", "cyan");

The canvas element
Canvas graphics can be drawn onto a <canvas> element. You can give such an
element width and height attributes to determine its size in pixels.

A new canvas is empty, meaning it is entirely transparent and thus shows up
simply as empty space in the document.

The <canvas> tag is intended to support different styles of drawing. To get
access to an actual drawing interface, we first need to create a context, which
is an object whose methods provide the drawing interface. There are currently
two widely supported drawing styles: "2d" for two-dimensional graphics and
"webgl" for three-dimensional graphics through the OpenGL interface.

This book won’t discuss WebGL. We stick to two dimensions. But if you
are interested in three-dimensional graphics, I do encourage you to look into
WebGL. It provides a very direct interface to modern graphics hardware and

268

thus allows you to render even complicated scenes efficiently, using JavaScript.
A context is created through the getContext method on the <canvas> element.

<p>Before canvas.</p>

<canvas width ="120" height ="60"></canvas >

<p>After canvas.</p>

<script >

var canvas = document.querySelector (" canvas ");

var context = canvas.getContext ("2d");

context.fillStyle = "red";

context.fillRect (10, 10, 100, 50);

</script >

After creating the context object, the example draws a red rectangle 100 pixels
wide and 50 pixels high, with its top-left corner at coordinates (10,10).

Just like in HTML (and SVG), the coordinate system that the canvas uses puts
(0,0) at the top-left corner, and the positive y-axis goes down from there. So
(10,10) is 10 pixels below and to the right of the top-left corner.

Filling and stroking
In the canvas interface, a shape can be filled, meaning its area is given a certain
color or pattern, or it can be stroked, which means a line is drawn along its
edge. The same terminology is used by SVG.

The fillRect method fills a rectangle. It takes first the x- and y-coordinates
of the rectangle’s top-left corner, then its width, and then its height. A similar
method, strokeRect, draws the outline of a rectangle.

Neither method takes any further parameters. The color of the fill, thickness
of the stroke, and so on are not determined by an argument to the method (as
you might justly expect) but rather by properties of the context object.

Setting fillStyle changes the way shapes are filled. It can be set to a string
that specifies a color, and any color understood by CSS can also be used here.

269

The strokeStyle property works similarly but determines the color used for a
stroked line. The width of that line is determined by the lineWidth property,
which may contain any positive number.

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

cx.strokeStyle = "blue";

cx.strokeRect (5, 5, 50, 50);

cx.lineWidth = 5;

cx.strokeRect (135, 5, 50, 50);

</script >

This code draws two blue squares, using a thicker line for the second one.

When no width or height attribute is specified, as in the previous example, a
canvas element gets a default width of 300 pixels and height of 150 pixels.

Paths
A path is a sequence of lines. The 2D canvas interface takes a peculiar approach
to describing such a path. It is done entirely through side effects. Paths are
not values that can be stored and passed around. Instead, if you want to do
something with a path, you make a sequence of method calls to describe its
shape.

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

cx.beginPath ();

for (var y = 10; y < 100; y += 10) {

cx.moveTo (10, y);

cx.lineTo (90, y);

}

cx.stroke ();

</script >

This example creates a path with a number of horizontal line segments and
then strokes it using the stroke method. Each segment created with lineTo

270

starts at the path’s current position. That position is usually the end of the
last segment, unless moveTo was called. In that case, the next segment would
start at the position passed to moveTo.

The path described by the previous program looks like this:

When filling a path (using the fill method), each shape is filled separately. A
path can contain multiple shapes—each moveTo motion starts a new one. But
the path needs to be closed (meaning its start and end are in the same position)
before it can be filled. If the path is not already closed, a line is added from
its end to its start, and the shape enclosed by the completed path is filled.

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

cx.beginPath ();

cx.moveTo (50, 10);

cx.lineTo (10, 70);

cx.lineTo (90, 70);

cx.fill();

</script >

This example draws a filled triangle. Note that only two of the triangle’s sides
are explicitly drawn. The third, from the bottom-right corner back to the top,
is implied and won’t be there when you stroke the path.

You could also use the closePath method to explicitly close a path by adding
an actual line segment back to the path’s start. This segment is drawn when
stroking the path.

271

Curves
A path may also contain curved lines. These are, unfortunately, a bit more
involved to draw than straight lines.

The quadraticCurveTo method draws a curve to a given point. To determine the
curvature of the line, the method is given a control point as well as a destination
point. Imagine this control point as attracting the line, giving the line its curve.
The line won’t go through the control point. Rather, the direction of the line
at its start and end points will be such that it aligns with the line from there
to the control point. The following example illustrates this:

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

cx.beginPath ();

cx.moveTo (10, 90);

// control =(60 ,10) goal =(90 ,90)

cx.quadraticCurveTo (60, 10, 90, 90);

cx.lineTo (60, 10);

cx.closePath ();

cx.stroke ();

</script >

It produces a path that looks like this:

We draw a quadratic curve from the left to the right, with (60,10) as control
point, and then draw two line segments going through that control point and
back to the start of the line. The result somewhat resembles a Star Trek
insignia. You can see the effect of the control point: the lines leaving the lower
corners start off in the direction of the control point and then curve toward
their target.

The bezierCurveTo method draws a similar kind of curve. Instead of a single
control point, this one has two—one for each of the line’s endpoints. Here is a
similar sketch to illustrate the behavior of such a curve:

<canvas ></canvas >

272

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

cx.beginPath ();

cx.moveTo (10, 90);

// control1 =(10 ,10) control2 =(90 ,10) goal =(50 ,90)

cx.bezierCurveTo (10, 10, 90, 10, 50, 90);

cx.lineTo (90, 10);

cx.lineTo (10, 10);

cx.closePath ();

cx.stroke ();

</script >

The two control points specify the direction at both ends of the curve. The
further they are away from their corresponding point, the more the curve will
“bulge” in that direction.

Such curves can be hard to work with—it’s not always clear how to find the
control points that provide the shape you are looking for. Sometimes you can
compute them, and sometimes you’ll just have to find a suitable value by trial
and error.

Arcs—fragments of a circle—are easier to reason about. The arcTo method
takes no less than five arguments. The first four arguments act somewhat like
the arguments to quadraticCurveTo. The first pair provides a sort of control point,
and the second pair gives the line’s destination. The fifth argument provides
the radius of the arc. The method will conceptually project a corner—a line
going to the control point and then to the destination point—and round the
corner’s point so that it forms part of a circle with the given radius. The arcTo

method then draws the rounded part, as well as a line from the starting position
to the start of the rounded part.

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

cx.beginPath ();

cx.moveTo (10, 10);

// control =(90 ,10) goal =(90 ,90) radius =20

cx.arcTo(90, 10, 90, 90, 20);

273

cx.moveTo (10, 10);

// control =(90 ,10) goal =(90 ,90) radius =80

cx.arcTo(90, 10, 90, 90, 80);

cx.stroke ();

</script >

This produces two rounded corners with different radii.

The arcTo method won’t draw the line from the end of the rounded part to the
goal position, though the word to in its name would suggest it does. You can
follow up with a call to lineTo with the same goal coordinates to add that part
of the line.

To draw a circle, you could use four calls to arcTo (each turning 90 degrees).
But the arc method provides a simpler way. It takes a pair of coordinates for
the arc’s center, a radius, and then a start and end angle.

Those last two parameters make it possible to draw only part of circle. The
angles are measured in radians, not degrees. This means a full circle has an
angle of 2π, or 2 * Math.PI, which is about 6.28. The angle starts counting at
the point to the right of the circle’s center and goes clockwise from there. You
can use a start of 0 and an end bigger than 2π (say, 7) to draw a full circle.

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

cx.beginPath ();

// center =(50 ,50) radius =40 angle=0 to 7

cx.arc(50, 50, 40, 0, 7);

// center =(150 ,50) radius =40 angle=0 to π1
2

cx.arc(150, 50, 40, 0, 0.5 * Math.PI);

cx.stroke ();

</script >

The resulting picture contains a line from the right of the full circle (first call
to arc) to the right of the quarter-circle (second call). Like other path-drawing
methods, a line drawn with arc is connected to the previous path segment by
default. You’d have to call moveTo or start a new path if you want to avoid this.

274

Drawing a pie chart
Imagine you’ve just taken a job at EconomiCorp, Inc., and your first assignment
is to draw a pie chart of their customer satisfaction survey results.

The results variable contains an array of objects that represent the survey
responses.

var results = [

{name: "Satisfied", count: 1043, color: "lightblue"},

{name: "Neutral", count: 563, color: "lightgreen "},

{name: "Unsatisfied", count: 510, color: "pink"},

{name: "No comment", count: 175, color: "silver "}

];

To draw a pie chart, we draw a number of pie slices, each made up of an arc
and a pair of lines to the center of that arc. We can compute the angle taken
up by each arc by dividing a full circle (2π) by the total number of responses
and then multiplying that number (the angle per response) by the number of
people who picked a given choice.

<canvas width ="200" height ="200" ></ canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

var total = results.reduce(function(sum , choice) {

return sum + choice.count;

}, 0);

// Start at the top

var currentAngle = -0.5 * Math.PI;

results.forEach(function(result) {

var sliceAngle = (result.count / total) * 2 * Math.PI;

cx.beginPath ();

// center =100,100, radius =100

// from current angle , clockwise by slice ' s angle

cx.arc(100, 100, 100,

currentAngle , currentAngle + sliceAngle);

275

currentAngle += sliceAngle;

cx.lineTo (100, 100);

cx.fillStyle = result.color;

cx.fill();

});

</script >

This draws the following chart:

But a chart that doesn’t tell us what it means isn’t very helpful. We need a
way to draw text to the canvas.

Text
A 2D canvas drawing context provides the methods fillText and strokeText. The
latter can be useful for outlining letters, but usually fillText is what you need.
It will fill the given text with the current fillColor.

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

cx.font = "28px Georgia ";

cx.fillStyle = "fuchsia ";

cx.fillText ("I can draw text , too!", 10, 50);

</script >

You can specify the size, style, and font of the text with the font property. This
example just gives a font size and family name. You can add italic or bold to
the start of the string to select a style.

276

The last two arguments to fillText (and strokeText) provide the position at
which the font is drawn. By default, they indicate the position of the start
of the text’s alphabetic baseline, which is the line that letters “stand” on, not
counting hanging parts in letters like j or p. You can change the horizontal
position by setting the textAlign property to "end" or "center" and the vertical
position by setting textBaseline to "top", "middle", or "bottom".

We will come back to our pie chart, and the problem of labeling the slices,
in the exercises at the end of the chapter.

Images
In computer graphics, a distinction is often made between vector graphics and
bitmap graphics. The first is what we have been doing so far in this chapter—
specifying a picture by giving a logical description of shapes. Bitmap graphics,
on the other hand, don’t specify actual shapes but rather work with pixel data
(rasters of colored dots).

The drawImage method allows us to draw pixel data onto a canvas. This pixel
data can originate from an element or from another canvas, and neither
has to be visible in the actual document. The following example creates a de-
tached element and loads an image file into it. But it cannot immediately
start drawing from this picture because the browser may not have fetched it
yet. To deal with this, we register a "load" event handler and do the drawing
after the image has loaded.

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

var img = document.createElement ("img");

img.src = "img/hat.png";

img.addEventListener ("load", function () {

for (var x = 10; x < 200; x += 30)

cx.drawImage(img , x, 10);

});

</script >

By default, drawImage will draw the image at its original size. You can also give
it two additional arguments to dictate a different width and height.

When drawImage is given nine arguments, it can be used to draw only a frag-
ment of an image. The second through fifth arguments indicate the rectangle
(x, y, width, and height) in the source image that should be copied, and the
sixth to ninth arguments give the rectangle (on the canvas) into which it should

277

be copied.
This can be used to pack multiple sprites (image elements) into a single

image file and then draw only the part you need. For example, we have this
picture containing a game character in multiple poses:

By alternating which pose we draw, we can show an animation that looks like
a walking character.

To animate the picture on a canvas, the clearRect method is useful. It re-
sembles fillRect, but instead of coloring the rectangle, it makes it transparent,
removing the previously drawn pixels.

We know that each sprite, each subpicture, is 24 pixels wide and 30 pixels
high. The following code loads the image and then sets up an interval (repeated
timer) to draw the next frame:

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

var img = document.createElement ("img");

img.src = "img/player.png";

var spriteW = 24, spriteH = 30;

img.addEventListener ("load", function () {

var cycle = 0;

setInterval(function () {

cx.clearRect(0, 0, spriteW , spriteH);

cx.drawImage(img ,

// source rectangle

cycle * spriteW , 0, spriteW , spriteH ,

// destination rectangle

0, 0, spriteW , spriteH);

cycle = (cycle + 1) % 8;

}, 120);

});

</script >

The cycle variable tracks our position in the animation. Each frame, it is
incremented and then clipped back to the 0 to 7 range by using the remainder
operator. This variable is then used to compute the x-coordinate that the sprite
for the current pose has in the picture.

278

Transformation
But what if we want our character to walk to the left instead of to the right?
We could add another set of sprites, of course. But we can also instruct the
canvas to draw the picture the other way round.

Calling the scale method will cause anything drawn after it to be scaled.
This method takes two parameters, one to set a horizontal scale and one to set
a vertical scale.

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

cx.scale(3, .5);

cx.beginPath ();

cx.arc(50, 50, 40, 0, 7);

cx.lineWidth = 3;

cx.stroke ();

</script >

Due to the call to scale, the circle is drawn three times as wide and half as
high.

Scaling will cause everything about the drawn image, including the line width,
to be stretched out or squeezed together as specified. Scaling by a negative
amount will flip the picture around. The flipping happens around point (0,0),
which means it will also flip the direction of the coordinate system. When a
horizontal scaling of -1 is applied, a shape drawn at x position 100 will end up
at what used to be position -100.

So to turn a picture around, we can’t simply add cx.scale(-1, 1) before the
call to drawImage since that would move our picture outside of the canvas, where
it won’t be visible. You could adjust the coordinates given to drawImage to com-
pensate for this by drawing the image at x position -50 instead of 0. Another
solution, which doesn’t require the code that does the drawing to know about
the scale change, is to adjust the axis around which the scaling happens.

There are several other methods besides scale that influence the coordinate
system for a canvas. You can rotate subsequently drawn shapes with the rotate

method and move them with the translate method. The interesting—and
confusing—thing is that these transformations stack, meaning that each one

279

happens relative to the previous transformations.
So if we translate by 10 horizontal pixels twice, everything will be drawn

20 pixels to the right. If we first move the center of the coordinate system
to (50,50) and then rotate by 20 degrees (0.1π in radians), that rotation will
happen around point (50,50).

translate(50, 50)

rotate(0.1*Math.PI)

rotate(0.1*Math.PI)

translate(50, 50)

But if we first rotate by 20 degrees and then translate by (50,50), the translation
will happen in the rotated coordinate system and thus produce a different
orientation. The order in which transformations are applied matters.

To flip a picture around the vertical line at a given x position, we can do the
following:

function flipHorizontally(context , around) {

context.translate(around , 0);

context.scale(-1, 1);

context.translate(-around , 0);

}

We move the y-axis to where we want our mirror to be, apply the mirroring,
and finally move the y-axis back to its proper place in the mirrored universe.
The following picture explains why this works:

mirror

1 23 4

This shows the coordinate systems before and after mirroring across the central

280

line. If we draw a triangle at a positive x position, it would, by default, be in
the place where triangle 1 is. A call to flipHorizontally first does a translation to
the right, which gets us to triangle 2. It then scales, flipping the triangle back
to position 3. This is not where it should be, if it were mirrored in the given
line. The second translate call fixes this—it “cancels” the initial translation
and makes triangle 4 appear exactly where it should.

We can now draw a mirrored character at position (100,0) by flipping the
world around the character’s vertical center.

<canvas ></canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

var img = document.createElement ("img");

img.src = "img/player.png";

var spriteW = 24, spriteH = 30;

img.addEventListener ("load", function () {

flipHorizontally(cx, 100 + spriteW / 2);

cx.drawImage(img , 0, 0, spriteW , spriteH ,

100, 0, spriteW , spriteH);

});

</script >

Storing and clearing transformations
Transformations stick around. Everything else we draw after drawing that
mirrored character would also be mirrored. That might be a problem.

It is possible to save the current transformation, do some drawing and trans-
forming, and then restore the old transformation. This is usually the proper
thing to do for a function that needs to temporarily transform the coordi-
nate system. First, we save whatever transformation the code that called the
function was using. Then, the function does its thing (on top of the existing
transformation), possibly adding more transformations. And finally, we revert
to the transformation that we started with.

The save and restore methods on the 2D canvas context perform this kind of
transformation management. They conceptually keep a stack of transformation
states. When you call save, the current state is pushed onto the stack, and
when you call restore, the state on top of the stack is taken off and used as the
context’s current transformation.

The branch function in the following example illustrates what you can do with
a function that changes the transformation and then calls another function (in

281

this case itself), which continues drawing with the given transformation.
This function draws a treelike shape by drawing a line, moving the center

of the coordinate system to the end of the line, and calling itself twice—first
rotated to the left and then rotated to the right. Every call reduces the length
of the branch drawn, and the recursion stops when the length drops below 8.

<canvas width ="600" height ="300" ></ canvas >

<script >

var cx = document.querySelector (" canvas ").getContext ("2d");

function branch(length , angle , scale) {

cx.fillRect(0, 0, 1, length);

if (length < 8) return;

cx.save();

cx.translate(0, length);

cx.rotate(-angle);

branch(length * scale , angle , scale);

cx.rotate (2 * angle);

branch(length * scale , angle , scale);

cx.restore ();

}

cx.translate (300, 0);

branch (60, 0.5, 0.8);

</script >

The result is a simple fractal.

If the calls to save and restore were not there, the second recursive call to
branch would end up with the position and rotation created by the first call.
It wouldn’t be connected to the current branch but rather to the innermost,
rightmost branch drawn by the first call. The resulting shape might also be
interesting, but it is definitely not a tree.

282

Back to the game
We now know enough about canvas drawing to start working on a canvas-based
display system for the game from the previous chapter. The new display will
no longer be showing just colored boxes. Instead, we’ll use drawImage to draw
pictures that represent the game’s elements.

We will define an object type CanvasDisplay, supporting the same interface as
DOMDisplay from Chapter 15, namely, the methods drawFrame and clear.

This object keeps a little more information than DOMDisplay. Rather than
using the scroll position of its DOM element, it tracks its own viewport, which
tells us what part of the level we are currently looking at. It also tracks time
and uses that to decide which animation frame to use. And finally, it keeps
a flipPlayer property so that even when the player is standing still, it keeps
facing the direction it last moved in.

function CanvasDisplay(parent , level) {

this.canvas = document.createElement (" canvas ");

this.canvas.width = Math.min(600, level.width * scale);

this.canvas.height = Math.min(450, level.height * scale);

parent.appendChild(this.canvas);

this.cx = this.canvas.getContext ("2d");

this.level = level;

this.animationTime = 0;

this.flipPlayer = false;

this.viewport = {

left: 0,

top: 0,

width: this.canvas.width / scale ,

height: this.canvas.height / scale

};

this.drawFrame (0);

}

CanvasDisplay.prototype.clear = function () {

this.canvas.parentNode.removeChild(this.canvas);

};

The animationTime counter is the reason we passed the step size to drawFrame in
Chapter 15, even though DOMDisplay does not use it. Our new drawFrame function
uses the counter to track time so that it can switch between animation frames
based on the current time.

283

CanvasDisplay.prototype.drawFrame = function(step) {

this.animationTime += step;

this.updateViewport ();

this.clearDisplay ();

this.drawBackground ();

this.drawActors ();

};

Other than tracking time, the method updates the viewport for the current
player position, fills the whole canvas with a background color, and draws the
background and actors onto that. Note that this is different from the approach
in Chapter 15, where we drew the background once and scrolled the wrapping
DOM element to move it.

Because shapes on a canvas are just pixels, after we draw them, there is
no way to move them (or remove them). The only way to update the canvas
display is to clear it and redraw the scene.

The updateViewportmethod is similar to DOMDisplay’s scrollPlayerIntoViewmethod.
It checks whether the player is too close to the edge of the screen and moves
the viewport when this is the case.

CanvasDisplay.prototype.updateViewport = function () {

var view = this.viewport , margin = view.width / 3;

var player = this.level.player;

var center = player.pos.plus(player.size.times (0.5));

if (center.x < view.left + margin)

view.left = Math.max(center.x - margin , 0);

else if (center.x > view.left + view.width - margin)

view.left = Math.min(center.x + margin - view.width ,

this.level.width - view.width);

if (center.y < view.top + margin)

view.top = Math.max(center.y - margin , 0);

else if (center.y > view.top + view.height - margin)

view.top = Math.min(center.y + margin - view.height ,

this.level.height - view.height);

};

The calls to Math.max and Math.min ensure that the viewport does not end up
showing space outside of the level. Math.max(x, 0) ensures that the resulting
number is not less than zero. Math.min, similarly, ensures a value stays below a
given bound.

When clearing the display, we’ll use a slightly different color depending on
whether the game is won (brighter) or lost (darker).

284

CanvasDisplay.prototype.clearDisplay = function () {

if (this.level.status == "won")

this.cx.fillStyle = "rgb(68, 191, 255)";

else if (this.level.status == "lost")

this.cx.fillStyle = "rgb(44, 136, 214)";

else

this.cx.fillStyle = "rgb(52, 166, 251)";

this.cx.fillRect(0, 0,

this.canvas.width , this.canvas.height);

};

To draw the background, we run through the tiles that are visible in the current
viewport, using the same trick used in obstacleAt in the previous chapter.

var otherSprites = document.createElement ("img");

otherSprites.src = "img/sprites.png";

CanvasDisplay.prototype.drawBackground = function () {

var view = this.viewport;

var xStart = Math.floor(view.left);

var xEnd = Math.ceil(view.left + view.width);

var yStart = Math.floor(view.top);

var yEnd = Math.ceil(view.top + view.height);

for (var y = yStart; y < yEnd; y++) {

for (var x = xStart; x < xEnd; x++) {

var tile = this.level.grid[y][x];

if (tile == null) continue;

var screenX = (x - view.left) * scale;

var screenY = (y - view.top) * scale;

var tileX = tile == "lava" ? scale : 0;

this.cx.drawImage(otherSprites ,

tileX , 0, scale , scale ,

screenX , screenY , scale , scale);

}

}

};

Tiles that are not empty (null) are drawn with drawImage. The otherSprites image
contains the pictures used for elements other than the player. It contains, from
left to right, the wall tile, the lava tile, and the sprite for a coin.

Background tiles are 20 by 20 pixels, since we will use the same scale that we

285

used in DOMDisplay. Thus, the offset for lava tiles is 20 (the value of the scale

variable), and the offset for walls is 0.
We don’t bother waiting for the sprite image to load. Calling drawImage with

an image that hasn’t been loaded yet will simply do nothing. Thus, we might
fail to draw the game properly for the first few frames, while the image is still
loading, but that is not a serious problem. Since we keep updating the screen,
the correct scene will appear as soon as the loading finishes.

The walking character shown earlier will be used to represent the player. The
code that draws it needs to pick the right sprite and direction based on the
player’s current motion. The first eight sprites contain a walking animation.
When the player is moving along a floor, we cycle through them based on the
display’s animationTime property. This is measured in seconds, and we want to
switch frames 12 times per second, so the time is multiplied by 12 first. When
the player is standing still, we draw the ninth sprite. During jumps, which are
recognized by the fact that the vertical speed is not zero, we use the tenth,
rightmost sprite.

Because the sprites are slightly wider than the player object—24 instead of
16 pixels, to allow some space for feet and arms—the method has to adjust the
x-coordinate and width by a given amount (playerXOverlap).

var playerSprites = document.createElement ("img");

playerSprites.src = "img/player.png";

var playerXOverlap = 4;

CanvasDisplay.prototype.drawPlayer = function(x, y, width ,

height) {

var sprite = 8, player = this.level.player;

width += playerXOverlap * 2;

x -= playerXOverlap;

if (player.speed.x != 0)

this.flipPlayer = player.speed.x < 0;

if (player.speed.y != 0)

sprite = 9;

else if (player.speed.x != 0)

sprite = Math.floor(this.animationTime * 12) % 8;

this.cx.save();

if (this.flipPlayer)

flipHorizontally(this.cx , x + width / 2);

this.cx.drawImage(playerSprites ,

sprite * width , 0, width , height ,

286

x, y, width , height);

this.cx.restore ();

};

The drawPlayer method is called by drawActors, which is responsible for drawing
all the actors in the game.

CanvasDisplay.prototype.drawActors = function () {

this.level.actors.forEach(function(actor) {

var width = actor.size.x * scale;

var height = actor.size.y * scale;

var x = (actor.pos.x - this.viewport.left) * scale;

var y = (actor.pos.y - this.viewport.top) * scale;

if (actor.type == "player ") {

this.drawPlayer(x, y, width , height);

} else {

var tileX = (actor.type == "coin" ? 2 : 1) * scale;

this.cx.drawImage(otherSprites ,

tileX , 0, width , height ,

x, y, width , height);

}

}, this);

};

When drawing something that is not the player, we look at its type to find the
offset of the correct sprite. The lava tile is found at offset 20, and the coin
sprite is found at 40 (two times scale).

We have to subtract the viewport’s position when computing the actor’s
position since (0,0) on our canvas corresponds to the top left of the viewport,
not the top left of the level. We could also have used translate for this. Either
way works.

That concludes the new display system. The resulting game looks something
like this:

287

Choosing a graphics interface
Whenever you need to generate graphics in the browser, you can choose between
plain HTML, SVG, and canvas. There is no single best approach that works in
all situations. Each option has strengths and weaknesses.

Plain HTML has the advantage of being simple. It also integrates well with
text. Both SVG and canvas allow you to draw text, but they won’t help you
position that text or wrap it when it takes up more than one line. In an
HTML-based picture, it is easy to include blocks of text.

SVG can be used to produce crisp graphics that look good at any zoom level.
It is more difficult to use than plain HTML but also much more powerful.

Both SVG and HTML build up a data structure (the DOM) that represents
the picture. This makes it possible to modify elements after they are drawn.
If you need to repeatedly change a small part of a big picture in response to
what the user is doing or as part of an animation, doing it in a canvas can be
needlessly expensive. The DOM also allows us to register mouse event handlers
on every element in the picture (even on shapes drawn with SVG). You can’t
do that with canvas.

But canvas’s pixel-oriented approach can be an advantage when drawing
a huge amount of tiny elements. The fact that it does not build up a data
structure but only repeatedly draws onto the same pixel surface gives canvas a
lower cost per shape.

There are also effects, such as rendering a scene one pixel at a time (for
example, using a ray tracer) or postprocessing an image with JavaScript (blur-
ring or distorting it), that can only be realistically handled by a pixel-based

288

technique.
In some cases, you may want to combine several of these techniques. For

example, you might draw a graph with SVG or canvas but show textual infor-
mation by positioning an HTML element on top of the picture.

For nondemanding applications, it really doesn’t matter much which inter-
face you choose. The second display we built for our game in this chapter
could have been implemented using any of these three graphics technologies
since it does not need to draw text, handle mouse interaction, or work with an
extraordinarily large amount of elements.

Summary
In this chapter, we discussed techniques for drawing graphics in the browser,
focusing on the <canvas> element.

A canvas node represents an area in a document that our program may draw
on. This drawing is done through a drawing context object, created with the
getContext method.

The 2D drawing interface allows us to fill and stroke various shapes. The
context’s fillStyle property determines how shapes are filled. The strokeStyle

and lineWidth properties control the way lines are drawn.
Rectangles and pieces of text can be drawn with a single method call. The

fillRect and strokeRect methods draw rectangles, and the fillText and strokeText

methods draw text. To create custom shapes, we must first build up a path.
Calling beginPath starts a new path. A number of other methods add lines

and curves to the current path. For example, lineTo can add a straight line.
When a path is finished, it can be filled with the fill method or stroked with
the stroke method.

Moving pixels from an image or another canvas onto our canvas is done with
the drawImage method. By default, this method draws the whole source image,
but by giving it more parameters, you can copy a specific area of the image.
We used this for our game by copying individual poses of the game character
out of an image that contained many such poses.

Transformations allow you to draw a shape in multiple orientations. A 2D
drawing context has a current transformation that can be changed with the
translate, scale, and rotate methods. These will affect all subsequent drawing
operations. A transformation state can be saved with the save method and
restored with the restore method.

When drawing an animation on a canvas, the clearRect method can be used
to clear part of the canvas before redrawing it.

289

Exercises
Shapes
Write a program that draws the following shapes on a canvas:

1. A trapezoid (a rectangle that is wider on one side)

2. A red diamond (a rectangle rotated 45 degrees or 1
4π radians)

3. A zigzagging line

4. A spiral made up of 100 straight line segments

5. A yellow star

When drawing the last two, you may want to refer to the explanation of Math

.cos and Math.sin in Chapter 13, which describes how to get coordinates on a
circle using these functions.

I recommend creating a function for each shape. Pass the position, and
optionally other properties, such as the size or the number of points, as param-
eters. The alternative, which is to hard-code numbers all over your code, tends
to make the code needlessly hard to read and modify.

The pie chart
Earlier in the chapter, we saw an example program that drew a pie chart.
Modify this program so that the name of each category is shown next to the
slice that represents it. Try to find a pleasing-looking way to automatically
position this text, which would work for other data sets as well. You may
assume that categories are no smaller than 5 percent (that is, there won’t be a
bunch of tiny ones next to each other).

You might again need Math.sin and Math.cos, as described in the previous
exercise.

290

A bouncing ball
Use the requestAnimationFrame technique that we saw in Chapter 13 and Chapter
15 to draw a box with a bouncing ball in it. The ball moves at a constant
speed and bounces off the box’s sides when it hits them.

Precomputed mirroring
One unfortunate thing about transformations is that they slow down drawing
of bitmaps. For vector graphics, the effect is less serious since only a few points
(for example, the center of a circle) need to be transformed, after which drawing
can happen as normal. For a bitmap image, the position of each pixel has to
be transformed, and though it is possible that browsers will get more clever
about this in the future, this currently causes a measurable increase in the time
it takes to draw a bitmap.

In a game like ours, where we are drawing only a single transformed sprite,
this is a nonissue. But imagine that we need to draw hundreds of characters
or thousands of rotating particles from an explosion.

Think of a way to allow us to draw an inverted character without loading
additional image files and without having to make transformed drawImage calls
every frame.

291

“The dream behind the Web is of a common information space in
which we communicate by sharing information. Its universality is
essential: the fact that a hypertext link can point to anything, be it
personal, local or global, be it draft or highly polished.”

—Tim Berners-Lee, The World Wide Web: A very short personal
history

17 HTTP
The Hypertext Transfer Protocol, already mentioned in Chapter 12, is the mech-
anism through which data is requested and provided on the World Wide Web.
This chapter describes the protocol in more detail and explains the way browser
JavaScript has access to it.

The protocol
If you type eloquentjavascript.net/17_http.html into your browser’s address
bar, the browser first looks up the address of the server associated with elo-
quentjavascript.net and tries to open a TCP connection to it on port 80, the
default port for HTTP traffic. If the server exists and accepts the connection,
the browser sends something like this:

GET /17 _http.html HTTP /1.1

Host: eloquentjavascript.net

User -Agent: Your browser ' s name

Then the server responds, through that same connection.

HTTP /1.1 200 OK

Content -Length: 65585

Content -Type: text/html

Last -Modified: Wed , 09 Apr 2014 10:48:09 GMT

<!doctype html >

... the rest of the document

The browser then takes the part of the response after the blank line and displays
it as an HTML document.

The information sent by the client is called the request. It starts with this
line:

GET /17 _http.html HTTP /1.1

The first word is the method of the request. GET means that we want to get the
specified resource. Other common methods are DELETE to delete a resource, PUT

292

to replace it, and POST to send information to it. Note that the server is not
obliged to carry out every request it gets. If you walk up to a random website
and tell it to DELETE its main page, it’ll probably refuse.

The part after the method name is the path of the resource the request
applies to. In the simplest case, a resource is simply a file on the server, but
the protocol doesn’t require it to be. A resource may be anything that can be
transferred as if it is a file. Many servers generate the responses they produce
on the fly. For example, if you open twitter.com/marijnjh, the server looks in
its database for a user named marijnjh, and if it finds one, it will generate a
profile page for that user.

After the resource path, the first line of the request mentions HTTP/1.1 to
indicate the version of the HTTP protocol it is using.

The server’s response will start with a version as well, followed by the status
of the response, first as a three-digit status code and then as a human-readable
string.

HTTP /1.1 200 OK

Status codes starting with a 2 indicate that the request succeeded. Codes
starting with 4 mean there was something wrong with the request. 404 is
probably the most famous HTTP status code—it means that the resource that
was requested could not be found. Codes that start with 5 mean an error
happened on the server and the request is not to blame.

The first line of a request or response may be followed by any number of
headers. These are lines in the form “name: value” that specify extra informa-
tion about the request or response. These headers were part of the example
response:

Content -Length: 65585

Content -Type: text/html

Last -Modified: Wed , 09 Apr 2014 10:48:09 GMT

This tells us the size and type of the response document. In this case, it is an
HTML document of 65,585 bytes. It also tells us when that document was last
modified.

For the most part, a client or server decides which headers to include in a
request or response, though a few headers are required. For example, the Host

header, which specifies the hostname, should be included in a request because a
server might be serving multiple hostnames on a single IP address, and without
that header, the server won’t know which host the client is trying to talk to.

After the headers, both requests and responses may include a blank line fol-
lowed by a body, which contains the data being sent. GET and DELETE requests

293

http://twitter.com/marijnjh

don’t send along any data, but PUT and POST requests do. Similarly, some re-
sponse types, such as error responses, do not require a body.

Browsers and HTTP
As we saw in the example, a browser will make a request when we enter a URL
in its address bar. When the resulting HTML page references other files, such
as images and JavaScript files, those are also fetched.

A moderately complicated website can easily include anywhere from 10 to
200 resources. To be able to fetch those quickly, browsers will make several
requests simultaneously, rather than waiting for the responses one at a time.
Such documents are always fetched using GET requests.

HTML pages may include forms, which allow the user to fill out information
and send it to the server. This is an example of a form:

<form method ="GET" action =" example/message.html">

<p>Name: <input type="text" name="name"></p>

<p>Message:
<textarea name=" message"></textarea ></p>

<p><button type=" submit">Send </button ></p>

</form >

This code describes a form with two fields: a small one asking for a name
and a larger one to write a message in. When you click the Send button, the
information in those fields will be encoded into a query string. When the <form>

element’s method attribute is GET (or is omitted), that query string is tacked onto
the action URL, and the browser makes a GET request to that URL.

GET /example/message.html?name=Jean&message=Yes%3F HTTP /1.1

The start of a query string is indicated by a question mark. After that follow
pairs of names and values, corresponding to the name attribute on the form
field elements and the content of those elements, respectively. An ampersand
character (&) is used to separate the pairs.

The actual message encoded in the previous URL is “Yes?”, even though the
question mark is replaced by a strange code. Some characters in query strings
must be escaped. The question mark, represented as %3F, is one of those. There
seems to be an unwritten rule that every format needs its own way of escaping
characters. This one, called URL encoding, uses a percent sign followed by two
hexadecimal digits that encode the character code. In this case, 3F, which is
63 in decimal notation, is the code of a question mark character. JavaScript
provides the encodeURIComponent and decodeURIComponent functions to encode and

294

decode this format.

console.log(encodeURIComponent (" Hello & goodbye "));

// → Hello %20%26%20 goodbye

console.log(decodeURIComponent (" Hello %20%26%20 goodbye "));

// → Hello & goodbye

If we change the method attribute of the HTML form in the example we saw
earlier to POST, the HTTP request made to submit the form will use the POST

method and put the query string in body of the request, rather than adding it
to the URL.

POST /example/message.html HTTP /1.1

Content -length: 24

Content -type: application/x-www -form -urlencoded

name=Jean&message=Yes%3F

By convention, the GET method is used for requests that do not have side effects,
such as doing a search. Requests that change something on the server, such
as creating a new account or posting a message, should be expressed with
other methods, such as POST. Client-side software, such as a browser, knows
that it shouldn’t blindly make POST requests but will often implicitly make GET

requests—for example, to prefetch a resource it believes the user will soon need.
The next chapter will return to forms and talk about how we can script them

with JavaScript.

XMLHttpRequest
The interface through which browser JavaScript can make HTTP requests is
called XMLHttpRequest (note the inconsistent capitalization). It was designed by
Microsoft, for its Internet Explorer browser, in the late 1990s. During this
time, the XML file format was very popular in the world of business software—
a world where Microsoft has always been at home. In fact, it was so popular
that the acronym XML was tacked onto the front of the name of an interface
for HTTP, which is in no way tied to XML.

The name isn’t completely nonsensical, though. The interface allows you
to parse response documents as XML if you want. Conflating two distinct
concepts (making a request and parsing the response) into a single thing is
terrible design, of course, but so it goes.

When the XMLHttpRequest interface was added to Internet Explorer, it allowed
people to do things with JavaScript that had been very hard before. For ex-

295

ample, websites started showing lists of suggestions when the user was typing
something into a text field. The script would send the text to the server over
HTTP as the user typed. The server, which had some database of possible
inputs, would match the database entries against the partial input and send
back possible completions to show the user. This was considered spectacular—
people were used to waiting for a full page reload for every interaction with a
website.

The other significant browser at that time, Mozilla (later Firefox), did not
want to be left behind. To allow people to do similarly neat things in its
browser, Mozilla copied the interface, including the bogus name. The next
generation of browsers followed this example, and today XMLHttpRequest is a de
facto standard interface.

Sending a request
To make a simple request, we create a request object with the XMLHttpRequest

constructor and call its open and send methods.

var req = new XMLHttpRequest ();

req.open("GET", "example/data.txt", false);

req.send(null);

console.log(req.responseText);

// → This is the content of data.txt

The open method configures the request. In this case, we choose to make a GET

request for the example/data.txt file. URLs that don’t start with a protocol
name (such as http:) are relative, which means that they are interpreted relative
to the current document. When they start with a slash (/), they replace the
current path, which is the part after the server name. When they do not, the
part of the current path up to and including its last slash character is put in
front of the relative URL.

After opening the request, we can send it with the send method. The argu-
ment to send is the request body. For GET requests, we can pass null. If the
third argument to open was false, send will return only after the response to our
request was received. We can read the request object’s responseText property to
get the response body.

The other information included in the response can also be extracted from
this object. The status code is accessible through the status property, and the
human-readable status text is accessible through statusText. Headers can be
read with getResponseHeader.

296

var req = new XMLHttpRequest ();

req.open("GET", "example/data.txt", false);

req.send(null);

console.log(req.status , req.statusText);

// → 200 OK

console.log(req.getResponseHeader ("content -type"));

// → text/plain

Header names are case-insensitive. They are usually written with a capital
letter at the start of each word, such as “Content-Type”, but “content-type”
and “cOnTeNt-TyPe” refer to the same header.

The browser will automatically add some request headers, such as “Host”
and those needed for the server to figure out the size of the body. But you can
add your own headers with the setRequestHeader method. This is needed only
for advanced uses and requires the cooperation of the server you are talking
to—a server is free to ignore headers it does not know how to handle.

Asynchronous Requests
In the examples we saw, the request has finished when the call to send returns.
This is convenient because it means properties such as responseText are available
immediately. But it also means that our program is suspended as long as the
browser and server are communicating. When the connection is bad, the server
is slow, or the file is big, that might take quite a while. Worse, because no
event handlers can fire while our program is suspended, the whole document
will become unresponsive.

If we pass true as the third argument to open, the request is asynchronous.
This means that when we call send, the only thing that happens right away is
that the request is scheduled to be sent. Our program can continue, and the
browser will take care of the sending and receiving of data in the background.

But as long as the request is running, we won’t be able to access the response.
We need a mechanism that will notify us when the data is available.

For this, we must listen for the "load" event on the request object.

var req = new XMLHttpRequest ();

req.open("GET", "example/data.txt", true);

req.addEventListener ("load", function () {

console.log("Done:", req.status);

});

req.send(null);

Just like the use of requestAnimationFrame in Chapter 15, this forces us to use

297

an asynchronous style of programming, wrapping the things that have to be
done after the request in a function and arranging for that to be called at the
appropriate time. We will come back to this later.

Fetching XML Data
When the resource retrieved by an XMLHttpRequest object is an XML document,
the object’s responseXML property will hold a parsed representation of this doc-
ument. This representation works much like the DOM discussed in Chapter
13, except that it doesn’t have HTML-specific functionality like the style prop-
erty. The object that responseXML holds corresponds to the document object. Its
documentElement property refers to the outer tag of the XML document. In the
following document (example/fruit.xml), that would be the <fruits> tag:

<fruits >

<fruit name=" banana" color =" yellow"/>

<fruit name="lemon" color =" yellow"/>

<fruit name=" cherry" color ="red"/>

</fruits >

We can retrieve such a file like this:

var req = new XMLHttpRequest ();

req.open("GET", "example/fruit.xml", false);

req.send(null);

console.log(req.responseXML.querySelectorAll ("fruit").length);

// → 3

XML documents can be used to exchange structured information with the
server. Their form—tags nested inside other tags—lends itself well to storing
most types of data, or at least better than flat text files. The DOM interface is
rather clumsy for extracting information, though, and XML documents tend to
be verbose. It is often a better idea to communicate using JSON data, which
is easier to read and write, both for programs and for humans.

var req = new XMLHttpRequest ();

req.open("GET", "example/fruit.json", false);

req.send(null);

console.log(JSON.parse(req.responseText));

// → {banana: "yellow", lemon: "yellow", cherry: "red"}

298

HTTP sandboxing
Making HTTP requests in web page scripts once again raises concerns about
security. The person who controls the script might not have the same interests
as the person on whose computer it is running. More specifically, if I visit the-
mafia.org, I do not want its scripts to be able to make a request to mybank.com,
using identifying information from my browser, with instructions to transfer all
my money to some random mafia account.

It is possible for websites to protect themselves against such attacks, but
that requires effort, and many websites fail to do it. For this reason, browsers
protect us by disallowing scripts to make HTTP requests to other domains
(names such as themafia.org and mybank.com).

This can be an annoying problem when building systems that want to ac-
cess several domains for legitimate reasons. Fortunately, servers can include
a header like this in their response to explicitly indicate to browsers that it is
okay for the request to come from other domains:

Access -Control -Allow -Origin: *

Abstracting requests
In Chapter 10, in our implementation of the AMD module system, we used a
hypothetical function called backgroundReadFile. It took a filename and a function
and called that function with the contents of the file when it had finished
fetching it. Here’s a simple implementation of that function:

function backgroundReadFile(url , callback) {

var req = new XMLHttpRequest ();

req.open("GET", url , true);

req.addEventListener ("load", function () {

if (req.status < 400)

callback(req.responseText);

});

req.send(null);

}

This simple abstraction makes it easier to use XMLHttpRequest for simple GET re-
quests. If you are writing a program that has to make HTTP requests, it is a
good idea to use a helper function so that you don’t end up repeating the ugly
XMLHttpRequest pattern all through your code.

The function argument’s name, callback, is a term that is often used to

299

describe functions like this. A callback function is given to other code to
provide that code with a way to “call us back” later.

It is not hard to write an HTTP utility function, tailored to what your
application is doing. The previous one does only GET requests and doesn’t give
us control over the headers or the request body. You could write another variant
for POST requests or a more generic one that supports various kinds of requests.
Many JavaScript libraries also provide wrappers for XMLHttpRequest.

The main problem with the previous wrapper is its handling of failure. When
the request returns a status code that indicates an error (400 and up), it does
nothing. This might be okay, in some circumstances, but imagine we put a
“loading” indicator on the page to indicate that we are fetching information.
If the request fails because the server crashed or the connection is briefly in-
terrupted, the page will just sit there, misleadingly looking like it is doing
something. The user will wait for a while, get impatient, and consider the site
uselessly flaky.

We should also have an option to be notified when the request fails so that
we can take appropriate action. For example, we could remove the “loading”
message and inform the user that something went wrong.

Error handling in asynchronous code is even trickier than error handling in
synchronous code. Because we often need to defer part of our work, putting it in
a callback function, the scope of a try block becomes meaningless. In the follow-
ing code, the exception will not be caught because the call to backgroundReadFile

returns immediately. Control then leaves the try block, and the function it was
given won’t be called until later.

try {

backgroundReadFile (" example/data.txt", function(text) {

if (text != "expected ")

throw new Error("That was unexpected ");

});

} catch (e) {

console.log("Hello from the catch block");

}

To handle failing requests, we have to allow an additional function to be passed
to our wrapper and call that when a request goes wrong. Alternatively, we can
use the convention that if the request fails, an additional argument describing
the problem is passed to the regular callback function. Here’s an example:

function getURL(url , callback) {

var req = new XMLHttpRequest ();

req.open("GET", url , true);

300

req.addEventListener ("load", function () {

if (req.status < 400)

callback(req.responseText);

else

callback(null , new Error (" Request failed: " +

req.statusText));

});

req.addEventListener ("error", function () {

callback(null , new Error (" Network error"));

});

req.send(null);

}

We have added a handler for the "error" event, which will be signaled when the
request fails entirely. We also call the callback function with an error argument
when the request completes with a status code that indicates an error.

Code using getURL must then check whether an error was given and, if it finds
one, handle it.

getURL ("data/nonsense.txt", function(content , error) {

if (error != null)

console.log(" Failed to fetch nonsense.txt: " + error);

else

console.log(" nonsense.txt: " + content);

});

This does not help when it comes to exceptions. When chaining several asyn-
chronous actions together, an exception at any point of the chain will still
(unless you wrap each handling function in its own try/catch block) land at the
top level and abort your chain of actions.

Promises
For complicated projects, writing asynchronous code in plain callback style is
hard to do correctly. It is easy to forget to check for an error or to allow an
unexpected exception to cut the program short in a crude way. Additionally,
arranging for correct error handling when the error has to flow through multiple
callback functions and catch blocks is tedious.

There have been a lot of attempts to solve this with extra abstractions. One
of the more successful ones is called promises. Promises wrap an asynchronous
action in an object, which can be passed around and told to do certain things
when the action finishes or fails. This interface is set to become part of the
next version of the JavaScript language but can already be used as a library.

301

The interface for promises isn’t entirely intuitive, but it is powerful. This
chapter will only roughly describe it. You can find a more thorough treatment
at www.promisejs.org.

To create a promise object, we call the Promise constructor, giving it a function
that initializes the asynchronous action. The constructor calls that function,
passing it two arguments, which are themselves functions. The first should be
called when the action finishes successfully, and the second should be called
when it fails.

Once again, here is our wrapper for GET requests, this time returning a
promise. We’ll simply call it get this time.

function get(url) {

return new Promise(function(succeed , fail) {

var req = new XMLHttpRequest ();

req.open("GET", url , true);

req.addEventListener ("load", function () {

if (req.status < 400)

succeed(req.responseText);

else

fail(new Error(" Request failed: " + req.statusText));

});

req.addEventListener ("error", function () {

fail(new Error(" Network error"));

});

req.send(null);

});

}

Note that the interface to the function itself is now a lot simpler. You give it a
URL, and it returns a promise. That promise acts as a handle to the request’s
outcome. It has a then method that you can call with two functions: one to
handle success and one to handle failure.

get(" example/data.txt").then(function(text) {

console.log("data.txt: " + text);

}, function(error) {

console.log(" Failed to fetch data.txt: " + error);

});

So far, this is just another way to express the same thing we already expressed.
It is only when you need to chain actions together that promises make a sig-
nificant difference.

Calling then produces a new promise, whose result (the value passed to success
handlers) depends on the return value of the first function we passed to then.

302

https://www.promisejs.org/

This function may return another promise to indicate that more asynchronous
work is being done. In this case, the promise returned by then itself will wait
for the promise returned by the handler function, succeeding or failing with the
same value when it is resolved. When the handler function returns a nonpromise
value, the promise returned by then immediately succeeds with that value as
its result.

This means you can use then to transform the result of a promise. For
example, this returns a promise whose result is the content of the given URL,
parsed as JSON:

function getJSON(url) {

return get(url).then(JSON.parse);

}

That last call to then did not specify a failure handler. This is allowed. The
error will be passed to the promise returned by then, which is exactly what
we want—getJSON does not know what to do when something goes wrong, but
hopefully its caller does.

As an example that shows the use of promises, we will build a program that
fetches a number of JSON files from the server and, while it is doing that, shows
the word loading. The JSON files contain information about people, with links
to files that represent other people in properties such as father, mother, or spouse.

We want to get the name of the mother of the spouse of example/bert.json.
And if something goes wrong, we want to remove the loading text and show an
error message instead. Here is how that might be done with promises:

<script >

function showMessage(msg) {

var elt = document.createElement ("div");

elt.textContent = msg;

return document.body.appendChild(elt);

}

var loading = showMessage (" Loading ...");

getJSON (" example/bert.json").then(function(bert) {

return getJSON(bert.spouse);

}).then(function(spouse) {

return getJSON(spouse.mother);

}).then(function(mother) {

showMessage ("The name is " + mother.name);

}).catch(function(error) {

showMessage(String(error));

}).then(function () {

document.body.removeChild(loading);

303

});

</script >

The resulting program is relatively compact and readable. The catch method
is similar to then, except that it only expects a failure handler and will pass
through the result unmodified in case of success. Much like with the catch

clause for the try statement, control will continue as normal after the failure is
caught. That way, the final then, which removes the loading message, is always
executed, even if something went wrong.

You can think of the promise interface as implementing its own language for
asynchronous control flow. The extra method calls and function expressions
needed to achieve this make the code look somewhat awkward but not remotely
as awkward as it would look if we took care of all the error handling ourselves.

Appreciating HTTP
When building a system that requires communication between a JavaScript
program running in the browser (client-side) and a program on a server (server-
side), there are several different ways to model this communication.

A commonly used model is that of remote procedure calls. In this model,
communication follows the patterns of normal function calls, except that the
function is actually running on another machine. Calling it involves making a
request to the server that includes the function’s name and arguments. The
response to that request contains the returned value.

When thinking in terms of remote procedure calls, HTTP is just a vehicle for
communication, and you will most likely write an abstraction layer that hides
it entirely.

Another approach is to build your communication around the concept of
resources and HTTP methods. Instead of a remote procedure called addUser,
you use a PUT request to /users/larry. Instead of encoding that user’s properties
in function arguments, you define a document format or use an existing format
that represents a user. The body of the PUT request to create a new resource is
then simply such a document. A resource is fetched by making a GET request
to the resource’s URL (for example, /user/larry), which returns the document
representing the resource.

This second approach makes it easier to use some of the features that HTTP
provides, such as support for caching resources (keeping a copy on the client
side). It can also help the coherence of your interface since resources are easier
to reason about than a jumble of functions.

304

Security and HTTPS
Data traveling over the Internet tends to follow a long, dangerous road. To
get to its destination, it must hop through anything from coffee-shop Wi-Fi
networks to networks controlled by various companies and states. At any point
along its route it may be inspected or even modified.

If it is important that something remain secret, such as the password to
your email account, or that it arrive at its destination unmodified, such as the
account number you transfer money to from your bank’s website, plain HTTP
is not good enough.

The secure HTTP protocol, whose URLs start with https://, wraps HTTP
traffic in a way that makes it harder to read and tamper with. First, the client
verifies that the server is who it claims to be by requiring that server to prove
that it has a cryptographic certificate issued by a certificate authority that the
browser recognizes. Next, all data going over the connection is encrypted in a
way that should prevent eavesdropping and tampering.

Thus, when it works right, HTTPS prevents both the someone impersonating
the website you were trying to talk to and the someone snooping on your
communication. It is not perfect, and there have been various incidents where
HTTPS failed because of forged or stolen certificates and broken software. Still,
plain HTTP is trivial to mess with, whereas breaking HTTPS requires the kind
of effort that only states or sophisticated criminal organizations can hope to
make.

Summary
In this chapter, we saw that HTTP is a protocol for accessing resources over the
Internet. A client sends a request, which contains a method (usually GET) and
a path that identifies a resource. The server then decides what to do with the
request and responds with a status code and a response body. Both requests
and responses may contain headers that provide additional information.

Browsers make GET requests to fetch the resources needed to display a web
page. A web page may also contain forms, which allow information entered by
the user to be sent along in the request made when the form is submitted. You
will learn more about that in the next chapter.

The interface through which browser JavaScript can make HTTP requests
is called XMLHttpRequest. You can usually ignore the “XML” part of that name
(but you still have to type it). There are two ways in which it can be used—
synchronous, which blocks everything until the request finishes, and asyn-

305

chronous, which requires an event handler to notice that the response came
in. In almost all cases, asynchronous is preferable. Making a request looks like
this:

var req = new XMLHttpRequest ();

req.open("GET", "example/data.txt", true);

req.addEventListener ("load", function () {

console.log(req.status);

});

req.send(null);

Asynchronous programming is tricky. Promises are an interface that makes
it slightly easier by helping route error conditions and exceptions to the right
handler and by abstracting away some of the more repetitive and error-prone
elements in this style of programming.

Exercises
Content negotiation
One of the things that HTTP can do, but that we have not discussed in this
chapter, is called content negotiation. The Accept header for a request can be
used to tell the server what type of document the client would like to get. Many
servers ignore this header, but when a server knows of various ways to encode
a resource, it can look at this header and send the one that the client prefers.

The URL eloquentjavascript.net/author is configured to respond with either
plaintext, HTML, or JSON, depending on what the client asks for. These
formats are identified by the standardized media types text/plain, text/html, and
application/json.

Send requests to fetch all three formats of this resource. Use the setRequestHeader

method of your XMLHttpRequest object to set the header named Accept to one of
the media types given earlier. Make sure you set the header after calling open

but before calling send.
Finally, try asking for the media type application/rainbows+unicorns and see

what happens.

Waiting for multiple promises
The Promise constructor has an all method that, given an array of promises,
returns a promise that waits for all of the promises in the array to finish. It
then succeeds, yielding an array of result values. If any of the promises in the

306

http://eloquentjavascript.net/author

array fail, the promise returned by all fails too (with the failure value from the
failing promise).

Try to implement something like this yourself as a regular function called
all.

Note that after a promise is resolved (has succeeded or failed), it can’t succeed
or fail again, and further calls to the functions that resolve it are ignored. This
can simplify the way you handle failure of your promise.

307

“I shall this very day, at Doctor’s feast,
My bounden service duly pay thee.
But one thing!—For insurance’ sake, I pray thee,
Grant me a line or two, at least.”

—Mephistopheles, in Goethe’s Faust

18 Forms and Form Fields
Forms were introduced briefly in the previous chapter as a way to submit in-
formation provided by the user over HTTP. They were designed for a pre-
JavaScript Web, assuming that interaction with the server always happens by
navigating to a new page.

But their elements are part of the DOM like the rest of the page, and the
DOM elements that represent form fields support a number of properties and
events that are not present on other elements. These make it possible to inspect
and control such input fields with JavaScript programs and do things such as
adding functionality to a traditional form or using forms and fields as building
blocks in a JavaScript application.

Fields
A web form consists of any number of input fields grouped in a <form> tag.
HTML allows a number of different styles of fields, ranging from simple on/off
checkboxes to drop-down menus and fields for text input. This book won’t
try to comprehensively discuss all field types, but we will start with a rough
overview.

A lot of field types use the <input> tag. This tag’s type attribute is used to
select the field’s style. These are some commonly used <input> types:
text A single-line text field
password Same as text but hides the text that is typed
checkbox An on/off switch
radio (Part of) a multiple-choice field
file Allows the user to choose a file from their computer
Form fields do not necessarily have to appear in a <form> tag. You can put them
anywhere in a page. Such fields cannot be submitted (only a form as a whole
can), but when responding to input with JavaScript, we often do not want to
submit our fields normally anyway.

<p><input type="text" value="abc"> (text)</p>

<p><input type=" password" value="abc"> (password)</p>

<p><input type=" checkbox" checked > (checkbox)</p>

308

<p><input type="radio" value ="A" name=" choice">

<input type="radio" value="B" name=" choice" checked >

<input type="radio" value="C" name=" choice"> (radio)</p>

<p><input type="file"> (file) </p>

The fields created with this HTML code look like this:

The JavaScript interface for such elements differs with the type of the element.
We’ll go over each of them later in the chapter.

Multiline text fields have their own tag, <textarea>, mostly because using an
attribute to specify a multiline starting value would be awkward. The <textarea

> requires a matching </textarea> closing tag and uses the text between those
two, instead of using its value attribute, as starting text.

<textarea >

one

two

three

</textarea >

Finally, the <select> tag is used to create a field that allows the user to select
from a number of predefined options.

<select >

<option >Pancakes </option >

<option >Pudding </option >

<option >Ice cream </option >

</select >

Such a field looks like this:

Whenever the value of a form field changes, it fires a "change" event.

309

Focus
Unlike most elements in an HTML document, form fields can get keyboard focus.
When clicked—or activated in some other way—they become the currently
active element, the main recipient of keyboard input.

If a document has a text field, text typed will end up in there only when
the field is focused. Other fields respond differently to keyboard events. For
example, a <select> menu tries to move to the option that contains the text
the user typed and responds to the arrow keys by moving its selection up and
down.

We can control focus from JavaScript with the focus and blur methods. The
first moves focus to the DOM element it is called on, and the second removes
focus. The value in document.activeElement corresponds to the currently focused
element.

<input type="text">

<script >

document.querySelector ("input").focus();

console.log(document.activeElement.tagName);

// → INPUT

document.querySelector ("input").blur();

console.log(document.activeElement.tagName);

// → BODY

</script >

For some pages, the user is expected to want to interact with a form field
immediately. JavaScript can be used to focus this field when the document
is loaded, but HTML also provides the autofocus attribute, which produces the
same effect but lets the browser know what we are trying to achieve. This makes
it possible for the browser to disable the behavior when it is not appropriate,
such as when the user has focused something else.

<input type="text" autofocus >

Browsers traditionally also allow the user to move the focus through the doc-
ument by pressing the Tab key. We can influence the order in which elements
receive focus with the tabindex attribute. The following example document will
let focus jump from the text input to the OK button, rather than going through
the help link first:

<input type="text" tabindex=1> (help)

<button onclick =" console.log ('ok ') " tabindex=2>OK </button >

By default, most types of HTML elements cannot be focused. But you can add

310

a tabindex attribute to any element, which will make it focusable.

Disabled fields
All form fields can be disabled through their disabled attribute, which also exists
as a property on the element’s DOM object.

<button >I ' m all right </button >

<button disabled >I ' m out </button >

Disabled fields cannot be focused or changed, and unlike active fields, they
usually look gray and faded.

When a program is in the process of handling an action caused by some button
or other control, which might require communication with the server and thus
take a while, it can be a good idea to disable the control until the action
finishes. That way, when the user gets impatient and clicks it again, they don’t
accidentally repeat their action.

The form as a whole
When a field is contained in a <form> element, its DOM element will have a
property form linking back to the form’s DOM element. The <form> element, in
turn, has a property called elements that contains an array-like collection of the
fields inside it.

The name attribute of a form field determines the way its value will be identi-
fied when the form is submitted. It can also be used as a property name when
accessing the form’s elements property, which acts both as an array-like object
(accessible by number) and a map (accessible by name).

<form action =" example/submit.html">

Name: <input type="text" name="name">

Password: <input type=" password" name=" password">

<button type=" submit">Log in </button >

</form >

<script >

var form = document.querySelector ("form");

console.log(form.elements [1]. type);

// → password

console.log(form.elements.password.type);

311

// → password

console.log(form.elements.name.form == form);

// → true

</script >

A button with a type attribute of submit will, when pressed, cause the form to
be submitted. Pressing Enter when a form field is focused has the same effect.

Submitting a form normally means that the browser navigates to the page
indicated by the form’s action attribute, using either a GET or a POST request.
But before that happens, a "submit" event is fired. This event can be handled
by JavaScript, and the handler can prevent the default behavior by calling
preventDefault on the event object.

<form action =" example/submit.html">

Value: <input type="text" name="value">

<button type=" submit">Save </button >

</form >

<script >

var form = document.querySelector ("form");

form.addEventListener (" submit", function(event) {

console.log(" Saving value", form.elements.value.value);

event.preventDefault ();

});

</script >

Intercepting "submit" events in JavaScript has various uses. We can write code
to verify that the values the user entered make sense and immediately show
an error message instead of submitting the form when they don’t. Or we can
disable the regular way of submitting the form entirely, as in the previous
example, and have our program handle the input, possibly using XMLHttpRequest

to send it over to a server without reloading the page.

Text fields
Fields created by <input> tags with a type of text or password, as well as textarea

tags, share a common interface. Their DOM elements have a value property
that holds their current content as a string value. Setting this property to
another string changes the field’s content.

The selectionStart and selectionEnd properties of text fields give us information
about the cursor and selection in the text. When nothing is selected, these
two properties hold the same number, indicating the position of the cursor.
For example, 0 indicates the start of the text, and 10 indicates the cursor is

312

after the 10th character. When part of the field is selected, the two properties
will differ, giving us the start and end of the selected text. Like value, these
properties may also be written to.

As an example, imagine you are writing an article about Khasekhemwy
but have some trouble spelling his name. The following code wires up a <

textarea> tag with an event handler that, when you press F2, inserts the string
“Khasekhemwy” for you.

<textarea ></textarea >

<script >

var textarea = document.querySelector (" textarea ");

textarea.addEventListener (" keydown", function(event) {

// The key code for F2 happens to be 113

if (event.keyCode == 113) {

replaceSelection(textarea , "Khasekhemwy ");

event.preventDefault ();

}

});

function replaceSelection(field , word) {

var from = field.selectionStart , to = field.selectionEnd;

field.value = field.value.slice(0, from) + word +

field.value.slice(to);

// Put the cursor after the word

field.selectionStart = field.selectionEnd =

from + word.length;

}

</script >

The replaceSelection function replaces the currently selected part of a text field’s
content with the given word and then moves the cursor after that word so that
the user can continue typing.

The "change" event for a text field does not fire every time something is typed.
Rather, it fires when the field loses focus after its content was changed. To
respond immediately to changes in a text field, you should register a handler for
the "input" event instead, which fires for every time the user types a character,
deletes text, or otherwise manipulates the field’s content.

The following example shows a text field and a counter showing the current
length of the text entered:

<input type="text"> length: 0

<script >

var text = document.querySelector ("input");

var output = document.querySelector ("# length ");

text.addEventListener ("input", function () {

313

output.textContent = text.value.length;

});

</script >

Checkboxes and radio buttons
A checkbox field is a simple binary toggle. Its value can be extracted or changed
through its checked property, which holds a Boolean value.

<input type=" checkbox" id=" purple">

<label for=" purple">Make this page purple </label >

<script >

var checkbox = document.querySelector ("# purple ");

checkbox.addEventListener (" change", function () {

document.body.style.background =

checkbox.checked ? "mediumpurple" : "";

});

</script >

The <label> tag is used to associate a piece of text with an input field. Its for

attribute should refer to the id of the field. Clicking the label will activate
the field, which focuses it and toggles its value when it is a checkbox or radio
button.

A radio button is similar to a checkbox, but it’s implicitly linked to other
radio buttons with the same name attribute so that only one of them can be
active at any time.

Color:

<input type="radio" name="color" value=" mediumpurple"> Purple

<input type="radio" name="color" value=" lightgreen"> Green

<input type="radio" name="color" value=" lightblue"> Blue

<script >

var buttons = document.getElementsByName ("color");

function setColor(event) {

document.body.style.background = event.target.value;

}

for (var i = 0; i < buttons.length; i++)

buttons[i]. addEventListener (" change", setColor);

</script >

The document.getElementsByName method gives us all elements with a given name

attribute. The example loops over those (with a regular for loop, not forEach

, because the returned collection is not a real array) and registers an event

314

handler for each element. Remember that event objects have a target property
referring to the element that triggered the event. This is often useful in event
handlers like this one, which will be called on different elements and need some
way to access the current target.

Select fields
Select fields are conceptually similar to radio buttons—they also allow the user
to choose from a set of options. But where a radio button puts the layout of
the options under our control, the appearance of a <select> tag is determined
by the browser.

Select fields also have a variant that is more akin to a list of checkboxes,
rather than radio boxes. When given the multiple attribute, a <select> tag will
allow the user to select any number of options, rather than just a single option.

<select multiple >

<option >Pancakes </option >

<option >Pudding </option >

<option >Ice cream </option >

</select >

This will, in most browsers, show up differently than a non-multiple select field,
which is commonly drawn as a drop-down control that shows the options only
when you open it.

The size attribute to the <select> tag is used to set the number of options that
are visible at the same time, which gives you explicit control over the drop-
down’s appearance. For example, setting the size attribute to "3" will make
the field show three lines, whether it has the multiple option enabled or not.

Each <option> tag has a value. This value can be defined with a value attribute,
but when that is not given, the text inside the option will count as the option’s
value. The value property of a <select> element reflects the currently selected
option. For a multiple field, though, this property doesn’t mean much since it
will give the value of only one of the currently selected options.

The <option> tags for a <select> field can be accessed as an array-like object
through the field’s options property. Each option has a property called selected,
which indicates whether that option is currently selected. The property can

315

also be written to select or deselect an option.
The following example extracts the selected values from a multiple select field

and uses them to compose a binary number from individual bits. Hold Ctrl (or
Command on a Mac) to select multiple options.

<select multiple >

<option value ="1" >0001 </ option >

<option value ="2" >0010 </ option >

<option value ="4" >0100 </ option >

<option value ="8" >1000 </ option >

</select > = 0

<script >

var select = document.querySelector (" select ");

var output = document.querySelector ("# output ");

select.addEventListener (" change", function () {

var number = 0;

for (var i = 0; i < select.options.length; i++) {

var option = select.options[i];

if (option.selected)

number += Number(option.value);

}

output.textContent = number;

});

</script >

File fields
File fields were originally designed as a way to upload files from the browser’s
machine through a form. In modern browsers, they also provide a way to read
such files from JavaScript programs. The field acts as a manner of gatekeeper.
The script cannot simply start reading private files from the user’s computer,
but if the user selects a file in such a field, the browser interprets that action
to mean that the script may read the file.

A file field usually looks like a button labeled with something like “choose
file” or “browse”, with information about the chosen file next to it.

<input type="file">

<script >

var input = document.querySelector (" input");

input.addEventListener (" change", function () {

if (input.files.length > 0) {

var file = input.files [0];

console.log("You chose", file.name);

316

if (file.type)

console.log("It has type", file.type);

}

});

</script >

The files property of a file field element is an array-like object (again, not a
real array) containing the files chosen in the field. It is initially empty. The
reason there isn’t simply a file property is that file fields also support a multiple

attribute, which makes it possible to select multiple files at the same time.
Objects in the files property have properties such as name (the filename), size

(the file’s size in bytes), and type (the media type of the file, such as text/plain

or image/jpeg).
What it does not have is a property that contains the content of the file.

Getting at that is a little more involved. Since reading a file from disk can take
time, the interface will have to be asynchronous to avoid freezing the document.
You can think of the FileReader constructor as being similar to XMLHttpRequest

but for files.

<input type="file" multiple >

<script >

var input = document.querySelector (" input");

input.addEventListener (" change", function () {

Array.prototype.forEach.call(input.files , function(file) {

var reader = new FileReader ();

reader.addEventListener ("load", function () {

console.log("File", file.name , "starts with",

reader.result.slice(0, 20));

});

reader.readAsText(file);

});

});

</script >

Reading a file is done by creating a FileReader object, registering a "load" event
handler for it, and calling its readAsText method, giving it the file we want to
read. Once loading finishes, the reader’s result property contains the file’s
content.

The example uses Array.prototype.forEach to iterate over the array since in a
normal loop it would be awkward to get the correct file and reader objects from
the event handler. The variables would be shared by all iterations of the loop.

FileReaders also fire an "error" event when reading the file fails for any rea-
son. The error object itself will end up in the reader’s error property. If you

317

don’t want to remember the details of yet another inconsistent asynchronous
interface, you could wrap it in a Promise (see Chapter 17) like this:

function readFile(file) {

return new Promise(function(succeed , fail) {

var reader = new FileReader ();

reader.addEventListener ("load", function () {

succeed(reader.result);

});

reader.addEventListener (" error", function () {

fail(reader.error);

});

reader.readAsText(file);

});

}

It is possible to read only part of a file by calling slice on it and passing the
result (a so-called blob object) to the file reader.

Storing data client-side
Simple HTML pages with a bit of JavaScript can be a great medium for “mini
applications”—small helper programs that automate everyday things. By con-
necting a few form fields with event handlers, you can do anything from con-
verting between degrees Celsius and Fahrenheit to computing passwords from
a master password and a website name.

When such an application needs to remember something between sessions,
you cannot use JavaScript variables since those are thrown away every time a
page is closed. You could set up a server, connect it to the Internet, and have
your application store something there. We will see how to do that in Chapter
20. But this adds a lot of extra work and complexity. Sometimes it is enough
to just keep the data in the browser. But how?

You can store string data in a way that survives page reloads by putting it
in the localStorage object. This object allows you to file string values under
names (also strings), as in this example:

localStorage.setItem (" username", "marijn ");

console.log(localStorage.getItem (" username "));

// → marijn

localStorage.removeItem (" username ");

A value in localStorage sticks around until it is overwritten, it is removed with
removeItem, or the user clears their local data.

318

Sites from different domains get different storage compartments. That means
data stored in localStorage by a given website can, in principle, only be read
(and overwritten) by scripts on that same site.

Browsers also enforce a limit on the size of the data a site can store in
localStorage, typically on the order of a few megabytes. That restriction, along
with the fact that filling up people’s hard drives with junk is not really prof-
itable, prevents this feature from eating up too much space.

The following code implements a simple note-taking application. It keeps
the user’s notes as an object, associating note titles with content strings. This
object is encoded as JSON and stored in localStorage. The user can select a
note from a <select> field and change that note’s text in a <textarea>. A note
can be added by clicking a button.

Notes: <select id="list"></select >

<button onclick =" addNote ()">new </button >

<textarea id=" currentnote" style=" width: 100%; height: 10em">

</textarea >

<script >

var list = document.querySelector ("# list");

function addToList(name) {

var option = document.createElement (" option ");

option.textContent = name;

list.appendChild(option);

}

// Initialize the list from localStorage

var notes = JSON.parse(localStorage.getItem ("notes")) ||

{" shopping list": ""};

for (var name in notes)

if (notes.hasOwnProperty(name))

addToList(name);

function saveToStorage () {

localStorage.setItem ("notes", JSON.stringify(notes));

}

var current = document.querySelector ("# currentnote ");

current.value = notes[list.value];

list.addEventListener (" change", function () {

current.value = notes[list.value];

});

current.addEventListener (" change", function () {

319

notes[list.value] = current.value;

saveToStorage ();

});

function addNote () {

var name = prompt ("Note name", "");

if (!name) return;

if (!notes.hasOwnProperty(name)) {

notes[name] = "";

addToList(name);

saveToStorage ();

}

list.value = name;

current.value = notes[name];

}

</script >

The script initializes the notes variable to the value stored in localStorage or, if
that is missing, to a simple object with only an empty "shopping list" note in
it. Reading a field that does not exist from localStorage will yield null. Passing
null to JSON.parse will make it parse the string "null" and return null. Thus, the
|| operator can be used to provide a default value in a situation like this.

Whenever the note data changes (when a new note is added or an existing
note changed), the saveToStorage function is called to update the storage field.
If this application was intended to handle thousands of notes, rather than a
handful, this would be too expensive, and we’d have to come up with a more
complicated way to store them, such as giving each note its own storage field.

When the user adds a new note, the code must update the text field explicitly,
even though the <select> field has a "change" handler that does the same thing.
This is necessary because "change" events fire only when the user changes the
field’s value, not when a script does it.

There is another object similar to localStorage called sessionStorage. The
difference between the two is that the content of sessionStorage is forgotten at
the end of each session, which for most browsers means whenever the browser
is closed.

Summary
HTML can express various types of form fields, such as text fields, checkboxes,
multiple-choice fields, and file pickers.

Such fields can be inspected and manipulated with JavaScript. They fire the
"change" event when changed, the "input" event when text is typed, and various

320

keyboard events. These events allow us to notice when the user is interacting
with the fields. Properties like value (for text and select fields) or checked (for
checkboxes and radio buttons) are used to read or set the field’s content.

When a form is submitted, its "submit" event fires. A JavaScript handler
can call preventDefault on that event to prevent the submission from happening.
Form field elements do not have to be wrapped in <form> tags.

When the user has selected a file from their local file system in a file picker
field, the FileReader interface can be used to access the content of this file from
a JavaScript program.

The localStorage and sessionStorage objects can be used to save information
in a way that survives page reloads. The first saves the data forever (or until
the user decides to clear it), and the second saves it until the browser is closed.

Exercises
A JavaScript workbench
Build an interface that allows people to type and run pieces of JavaScript code.

Put a button next to a <textarea> field, which, when pressed, uses the Function

constructor we saw in Chapter 10 to wrap the text in a function and call it.
Convert the return value of the function, or any error it raised, to a string and
display it after the text field.

Autocompletion
Extend a text field so that when the user types, a list of suggested values
is shown below the field. You have an array of possible values available and
should show those that start with the text that was typed. When a suggestion
is clicked, replace the text field’s current value with it.

Conway’s Game of Life
Conway’s Game of Life is a simple simulation that creates artificial “life” on
a grid, each cell of which is either live or not. Each generation (turn), the
following rules are applied:

• Any live cell with fewer than two or more than three live neighbors dies.

• Any live cell with two or three live neighbors lives on to the next gener-
ation.

321

• Any dead cell with exactly three live neighbors becomes a live cell.

A neighbor is defined as any adjacent cell, including diagonally adjacent ones.
Note that these rules are applied to the whole grid at once, not one square at

a time. That means the counting of neighbors is based on the situation at the
start of the generation, and changes happening to neighbor cells during this
generation should not influence the new state of a given cell.

Implement this game using whichever data structure you find appropriate.
Use Math.random to populate the grid with a random pattern initially. Display
it as a grid of checkbox fields, with a button next to it to advance to the next
generation. When the user checks or unchecks the checkboxes, their changes
should be included when computing the next generation.

322

19 Project: A Paint Program
I look at the many colors before me. I look at my blank canvas.
Then, I try to apply colors like words that shape poems, like notes
that shape music.
—Joan Miro

The material from the previous chapters gives you all the elements you need
to build a simple web application. In this chapter, we will do just that.

Our application will be a web-based drawing program, along the lines of
Microsoft Paint. You can use it to open image files, scribble on them with your
mouse, and save them. This is what it will look like:

Painting on a computer is great. You don’t need to worry about materials,
skill, or talent. You just start smearing.

323

Implementation
The interface for the paint program shows a big <canvas> element on top, with
a number of form fields below it. The user draws on the picture by selecting a
tool from a <select> field and then clicking or dragging across the canvas. There
are tools for drawing lines, erasing parts of the picture, adding text, and so on.

Clicking the canvas will hand off the "mousedown" event to the currently selected
tool, which can handle it in whichever way it chooses. The line drawing tool,
for example, will listen for "mousemove" events until the mouse button is released
and draw lines along the mouse’s path using the current color and brush size.

Color and brush size are selected with additional form fields. These are
hooked up to update the canvas drawing context’s fillStyle, strokeStyle, and
lineWidth whenever they are changed.

You can load an image into the program in two ways. The first uses a file
field, where the user can select a file on their own file system. The second asks
for a URL and will fetch an image from the Web.

Images are saved in a somewhat atypical way. The save link at the right side
points at the current image. It can be followed, shared, or saved. I will explain
how this is achieved in a moment.

Building the DOM
Our program’s interface is built from more than 30 DOM elements. We need
to construct these somehow.

HTML is the most obvious format for defining complex DOM structures. But
separating the program into a piece of HTML and a script is made difficult by
the fact that many of the DOM elements need event handlers or have to be
touched by the script in some other way. Thus, our script would have to make
lots of querySelector (or similar) calls in order to find the DOM elements that
it needs to act on.

It would be nice if the DOM structure for each part of our interface is defined
close to the JavaScript code that drives it. Thus, I’ve chosen to do all creation
of DOM nodes in JavaScript. As we saw in Chapter 13, the built-in interface
for building up a DOM structure is horrendously verbose. If we are going to
do a lot of DOM construction, we need a helper function.

This helper function is an extended version of the elt function from Chapter
13. It creates an element with the given name and attributes and appends all
further arguments it gets as child nodes, automatically converting strings to
text nodes.

324

function elt(name , attributes) {

var node = document.createElement(name);

if (attributes) {

for (var attr in attributes)

if (attributes.hasOwnProperty(attr))

node.setAttribute(attr , attributes[attr]);

}

for (var i = 2; i < arguments.length; i++) {

var child = arguments[i];

if (typeof child == "string ")

child = document.createTextNode(child);

node.appendChild(child);

}

return node;

}

This allows us to create elements easily, without making our source code as
long and dull as a corporate end-user agreement.

The foundation
The core of our program is the createPaint function, which appends the paint
interface to the DOM element it is given as an argument. Because we want
to build our program piece by piece, we define an object called controls, which
will hold functions to initialize the various controls below the image.

var controls = Object.create(null);

function createPaint(parent) {

var canvas = elt(" canvas", {width: 500, height: 300});

var cx = canvas.getContext ("2d");

var toolbar = elt("div", {class: "toolbar "});

for (var name in controls)

toolbar.appendChild(controls[name](cx));

var panel = elt("div", {class: "picturepanel "}, canvas);

parent.appendChild(elt("div", null , panel , toolbar));

}

Each control has access to the canvas drawing context and, through that con-
text’s canvas property, to the <canvas> element. Most of the program’s state lives
in this canvas—it contains the current picture as well as the selected color (in
its fillStyle property) and brush size (in its lineWidth property).

We wrap the canvas and the controls in <div> elements with classes so we can

325

add some styling, such as a gray border around the picture.

Tool selection
The first control we add is the <select> element that allows the user to pick a
drawing tool. As with controls, we will use an object to collect the various tools
so that we do not have to hard-code them all in one place and can add more
tools later. This object associates the names of the tools with the function that
should be called when they are selected and the canvas is clicked.

var tools = Object.create(null);

controls.tool = function(cx) {

var select = elt(" select ");

for (var name in tools)

select.appendChild(elt(" option", null , name));

cx.canvas.addEventListener (" mousedown", function(event) {

if (event.which == 1) {

tools[select.value](event , cx);

event.preventDefault ();

}

});

return elt("span", null , "Tool: ", select);

};

The tool field is populated with <option> elements for all tools that have been
defined, and a "mousedown" handler on the canvas element takes care of calling the
function for the current tool, passing it both the event object and the drawing
context as arguments. It also calls preventDefault so that holding the mouse
button and dragging does not cause the browser to select parts of the page.

The most basic tool is the line tool, which allows the user to draw lines with
the mouse. To put the line ends in the right place, we need to be able to
find the canvas-relative coordinates that a given mouse event corresponds to.
The getBoundingClientRect method, briefly mentioned in Chapter 13, can help us
here. It tells us where an element is shown, relative to the top-left corner of
the screen. The clientX and clientY properties on mouse events are also relative
to this corner, so we can subtract the top-left corner of the canvas from them
to get a position relative to that corner.

function relativePos(event , element) {

var rect = element.getBoundingClientRect ();

326

return {x: Math.floor(event.clientX - rect.left),

y: Math.floor(event.clientY - rect.top)};

}

Several of the drawing tools need to listen for "mousemove" events as long as the
mouse button is held down. The trackDrag function takes care of the event
registration and unregistration for such situations.

function trackDrag(onMove , onEnd) {

function end(event) {

removeEventListener (" mousemove", onMove);

removeEventListener (" mouseup", end);

if (onEnd)

onEnd(event);

}

addEventListener (" mousemove", onMove);

addEventListener (" mouseup", end);

}

This function takes two arguments. One is a function to call for each "mousemove"

event, and the other is a function to call when the mouse button is released.
Either argument can be omitted when it is not needed.

The line tool uses these two helpers to do the actual drawing.

tools.Line = function(event , cx, onEnd) {

cx.lineCap = "round";

var pos = relativePos(event , cx.canvas);

trackDrag(function(event) {

cx.beginPath ();

cx.moveTo(pos.x, pos.y);

pos = relativePos(event , cx.canvas);

cx.lineTo(pos.x, pos.y);

cx.stroke ();

}, onEnd);

};

The function starts by setting the drawing context’s lineCap property to "round",
which causes both ends of a stroked path to be round rather than the default
square form. This is a trick to make sure that multiple separate lines, drawn in
response to separate events, look like a single, coherent line. With bigger line
widths, you will see gaps at corners if you use the default flat line caps.

Then, for every "mousemove" event that occurs as long as the mouse button
is down, a simple line segment is drawn between the mouse’s old and new
position, using whatever strokeStyle and lineWidth happen to be currently set.

327

The onEnd argument to tools.Line is simply passed through to trackDrag. The
normal way to run tools won’t pass a third argument, so when using the line
tool, that argument will hold undefined, and nothing happens at the end of the
mouse drag. The argument is there to allow us to implement the erase tool on
top of the line tool with very little additional code.

tools.Erase = function(event , cx) {

cx.globalCompositeOperation = "destination -out";

tools.Line(event , cx, function () {

cx.globalCompositeOperation = "source -over";

});

};

The globalCompositeOperation property influences the way drawing operations on
a canvas change the color of the pixels they touch. By default, the property’s
value is "source-over", which means that the drawn color is overlaid on the
existing color at that spot. If the color is opaque, it will simply replace the old
color, but if it is partially transparent, the two will be mixed.

The erase tool sets globalCompositeOperation to "destination-out", which has the
effect of erasing the pixels we touch, making them transparent again.

That gives us two tools in our paint program. We can draw black lines a
single pixel wide (the default strokeStyle and lineWidth for a canvas) and erase
them again. It is a working, albeit rather limited, paint program.

Color and brush size
Assuming that users will want to draw in colors other than black and use
different brush sizes, let’s add controls for those two settings.

In Chapter 18, I discussed a number of different form fields. Color fields
were not among those. Traditionally, browsers don’t have built-in support for
color pickers, but in the past few years, a number of new form field types have
been standardized. One of those is <input type="color">. Others include "date",
"email", "url", and "number". Not all browsers support them yet—at the time of
writing, no version of Internet Explorer supports color fields. The default type
of an <input> tag is "text", and when an unsupported type is used, browsers
will treat it as a text field. This means that Internet Explorer users running
our paint program will have to type in the name of the color they want, rather
than select it from a convenient widget.

This is what a color picker may look like:

328

controls.color = function(cx) {

var input = elt("input", {type: "color "});

input.addEventListener (" change", function () {

cx.fillStyle = input.value;

cx.strokeStyle = input.value;

});

return elt("span", null , "Color: ", input);

};

Whenever the value of the color field changes, the drawing context’s fillStyle

and strokeStyle are updated to hold the new value.
The field for configuring the brush size works similarly.

controls.brushSize = function(cx) {

var select = elt(" select ");

var sizes = [1, 2, 3, 5, 8, 12, 25, 35, 50, 75, 100];

sizes.forEach(function(size) {

select.appendChild(elt(" option", {value: size},

size + " pixels "));

});

select.addEventListener (" change", function () {

cx.lineWidth = select.value;

});

return elt("span", null , "Brush size: ", select);

};

329

The code generates options from an array of brush sizes, and again ensures
that the canvas’ lineWidth is updated when a brush size is chosen.

Saving
To explain the implementation of the save link, I must first tell you about
data URLs. A data URL is a URL with data: as its protocol. Unlike regular
http: and https: URLs, data URLs don’t point at a resource but rather contain
the entire resource in them. This is a data URL containing a simple HTML
document:

data:text/html ,<h1 style="color:red">Hello!</h1>

Data URLs are useful for various tasks, such as including small images directly
in a style sheet file. They also allow us to link to files that we created on the
client side, in the browser, without first moving them to some server.

Canvas elements have a convenient method, called toDataURL, which will return
a data URL that contains the picture on the canvas as an image file. We don’t
want to update our save link every time the picture is changed, however. For
big pictures, that involves moving quite a lot of data into a link and would be
noticeably slow. Instead, we rig the link to update its href attribute whenever
it is focused with the keyboard or the mouse is moved over it.

controls.save = function(cx) {

var link = elt("a", {href: "/"}, "Save");

function update () {

try {

link.href = cx.canvas.toDataURL ();

} catch (e) {

if (e instanceof SecurityError)

link.href = "javascript:alert(" +

JSON.stringify ("Can ' t save: " + e.toString ()) + ")";

else

throw e;

}

}

link.addEventListener (" mouseover", update);

link.addEventListener ("focus", update);

return link;

};

Thus, the link just quietly sits there, pointing at the wrong thing, but when the
user approaches it, it magically updates itself to point at the current picture.

330

If you load a big image, some browsers will choke on the giant data URLs
that this produces. For small pictures, this approach works without problem.

But here we once again run into the subtleties of browser sandboxing. When
an image is loaded from a URL on another domain, if the server’s response
doesn’t include a header that tells the browser the resource may be used from
other domains (see Chapter 17), then the canvas will contain information that
the user may look at but that the script may not.

We may have requested a picture that contains private information (for ex-
ample, a graph showing the user’s bank account balance) using the user’s ses-
sion. If scripts could get information out of that picture, they could snoop on
the user in undesirable ways.

To prevent these kinds of information leaks, browsers will mark a canvas as
tainted when an image that the script may not see is drawn onto it. Pixel data,
including data URLs, may not be extracted from a tainted canvas. You can
write to it, but you can no longer read it.

This is why we need the try/catch statement in the update function for the
save link. When the canvas has become tainted, calling toDataURL will raise an
exception that is an instance of SecurityError. When that happens, we set the
link to point at yet another kind of URL, using the javascript: protocol. Such
links simply execute the script given after the colon when they are followed so
that the link will show an alert window informing the user of the problem when
it is clicked.

Loading image files
The final two controls are used to load images from local files and from URLs.
We’ll need the following helper function, which tries to load an image file from
a URL and replace the contents of the canvas with it:

function loadImageURL(cx, url) {

var image = document.createElement ("img");

image.addEventListener ("load", function () {

var color = cx.fillStyle , size = cx.lineWidth;

cx.canvas.width = image.width;

cx.canvas.height = image.height;

cx.drawImage(image , 0, 0);

cx.fillStyle = color;

cx.strokeStyle = color;

cx.lineWidth = size;

});

image.src = url;

331

}

We want to change the size of the canvas to precisely fit the image. For some
reason, changing the size of a canvas will cause its drawing context to forget
configuration properties such as fillStyle and lineWidth, so the function saves
those and restores them after it has updated the canvas size.

The control for loading a local file uses the FileReader technique from Chapter
18. Apart from the readAsText method we used there, such reader objects also
have a method called readAsDataURL, which is exactly what we need here. We
load the file that the user chose as a data URL and pass it to loadImageURL to
put it into the canvas.

controls.openFile = function(cx) {

var input = elt("input", {type: "file "});

input.addEventListener (" change", function () {

if (input.files.length == 0) return;

var reader = new FileReader ();

reader.addEventListener ("load", function () {

loadImageURL(cx, reader.result);

});

reader.readAsDataURL(input.files [0]);

});

return elt("div", null , "Open file: ", input);

};

Loading a file from a URL is even simpler. But with a text field, it is less
clear when the user has finished writing the URL, so we can’t simply listen for
"change" events. Instead, we will wrap the field in a form and respond when
the form is submitted, either because the user pressed Enter or because they
clicked the load button.

controls.openURL = function(cx) {

var input = elt("input", {type: "text "});

var form = elt("form", null ,

"Open URL: ", input ,

elt(" button", {type: "submit"}, "load"));

form.addEventListener (" submit", function(event) {

event.preventDefault ();

loadImageURL(cx, input.value);

});

return form;

};

We have now defined all the controls that our simple paint program needs, but
it could still use a few more tools.

332

Finishing up
We can easily add a text tool that uses prompt to ask the user which string it
should draw.

tools.Text = function(event , cx) {

var text = prompt ("Text:", "");

if (text) {

var pos = relativePos(event , cx.canvas);

cx.font = Math.max(7, cx.lineWidth) + "px sans -serif";

cx.fillText(text , pos.x, pos.y);

}

};

You could add extra fields for the font size and the font, but for simplicity’s
sake, we always use a sans-serif font and base the font size on the current brush
size. The minimum size is 7 pixels because text smaller than that is unreadable.

Another indispensable tool for drawing amateurish computer graphics is the
spray paint tool. This one draws dots in random locations under the brush as
long as the mouse is held down, creating denser or less dense speckling based
on how fast or slow the mouse moves.

tools.Spray = function(event , cx) {

var radius = cx.lineWidth / 2;

var area = radius * radius * Math.PI;

var dotsPerTick = Math.ceil(area / 30);

var currentPos = relativePos(event , cx.canvas);

var spray = setInterval(function () {

for (var i = 0; i < dotsPerTick; i++) {

var offset = randomPointInRadius(radius);

cx.fillRect(currentPos.x + offset.x,

currentPos.y + offset.y, 1, 1);

}

}, 25);

trackDrag(function(event) {

currentPos = relativePos(event , cx.canvas);

}, function () {

clearInterval(spray);

});

};

The spray tool uses setInterval to spit out colored dots every 25 milliseconds as
long as the mouse button is held down. The trackDrag function is used to keep
currentPos pointing at the current mouse position and to turn off the interval

333

when the mouse button is released.
To determine how many dots to draw every time the interval fires, the func-

tion computes the area of the current brush and divides that by 30. To find a
random position under the brush, the randomPointInRadius function is used.

function randomPointInRadius(radius) {

for (;;) {

var x = Math.random () * 2 - 1;

var y = Math.random () * 2 - 1;

if (x * x + y * y <= 1)

return {x: x * radius , y: y * radius };

}

}

This function generates points in the square between (-1,-1) and (1,1). Using
the Pythagorean theorem, it tests whether the generated point lies within a
circle of radius 1. As soon as the function finds such a point, it returns the
point multiplied by the radius argument.

The loop is necessary for a uniform distribution of dots. The straightforward
way of generating a random point within a circle would be to use a random
angle and distance and call Math.sin and Math.cos to create the corresponding
point. But with that method, the dots are more likely to appear near the center
of the circle. There are other ways around that, but they’re more complicated
than the previous loop.

We now have a functioning paint program.(!interactive Run the code below
to try it.!)

Exercises
There is still plenty of room for improvement in this program. Let’s add a few
more features as exercises.

Rectangles
Define a tool called Rectangle that fills a rectangle (see the fillRect method from
Chapter 16) with the current color. The rectangle should span from the point
where the user pressed the mouse button to the point where they released it.
Note that the latter might be above or to the left of the former.

Once it works, you’ll notice that it is somewhat jarring to not see the rect-
angle as you are dragging the mouse to select its size. Can you come up with

334

a way to show some kind of rectangle during the dragging, without actually
drawing to the canvas until the mouse button is released?

If nothing comes to mind, think back to the position: absolute style discussed
in Chapter 13, which can be used to overlay a node on the rest of the document.
The pageX and pageY properties of a mouse event can be used to position an
element precisely under the mouse, by setting the left, top, width, and height

styles to the correct pixel values.

Color picker
Another tool that is commonly found in graphics programs is a color picker,
which allows the user to click the picture and selects the color under the mouse
pointer. Build this.

For this tool, we need a way to access the content of the canvas. The toDataURL

method more or less did that, but getting pixel information out of such a data
URL is hard. Instead, we’ll use the getImageData method on the drawing context,
which returns a rectangular piece of the image as an object with width, height,
and data properties. The data property holds an array of numbers from 0 to
255, using four numbers to represent each pixel’s red, green, blue, and alpha
(opaqueness) components.

This example retrieves the numbers for a single pixel from a canvas once
when the canvas is blank (all pixels are transparent black) and once when the
pixel has been colored red.

function pixelAt(cx, x, y) {

var data = cx.getImageData(x, y, 1, 1);

console.log(data.data);

}

var canvas = document.createElement (" canvas ");

var cx = canvas.getContext ("2d");

pixelAt(cx, 10, 10);

// → [0, 0, 0, 0]

cx.fillStyle = "red";

cx.fillRect (10, 10, 1, 1);

pixelAt(cx, 10, 10);

// → [255, 0, 0, 255]

The arguments to getImageData indicate the starting x- and y-coordinates of the
rectangle we want to retrieve, followed by its width and height.

Ignore transparency during this exercise and look only at the first three values

335

for a given pixel. Also, do not worry about updating the color field when the
user picks a color. Just make sure that the drawing context’s fillStyle and
strokeStyle are set to the color under the mouse cursor.

Remember that these properties accept any color that CSS understands,
which includes the rgb(R, G, B) style you saw in Chapter 15.

The getImageData method is subject to the same restrictions as toDataURL—it
will raise an error when the canvas contains pixels that originate from another
domain. Use a try/catch statement to report such errors with an alert dialog.

Flood fill
This is a more advanced exercise than the preceding two, and it will require
you to design a nontrivial solution to a tricky problem. Make sure you have
plenty of time and patience before starting to work on this exercise, and do not
get discouraged by initial failures.

A flood fill tool colors the pixel under the mouse and the surrounding pixels
of the same color. For the purpose of this exercise, we will consider such a group
to include all pixels that can be reached from our starting pixel by moving in
single-pixel horizontal and vertical steps (not diagonal), without ever touching
a pixel that has a color different from the starting pixel.

The following image illustrates the set of pixels colored when the flood fill
tool is used at the marked pixel:

The flood fill does not leak through diagonal gaps and does not touch pixels
that are not reachable, even if they have the same color as the target pixel.

You will once again need getImageData to find out the color for each pixel. It
is probably a good idea to fetch the whole image in one go and then pick out
pixel data from the resulting array. The pixels are organized in this array in a
similar way to the grid elements in Chapter 7, one row at a time, except that
each pixel is represented by four values. The first value for the pixel at (x,y) is
at position (x + y × width) × 4.

Do include the fourth (alpha) value this time since we want to be able to tell
the difference between empty and black pixels.

336

Finding all adjacent pixels with the same color requires you to “walk” over
the pixel surface, one pixel up, down, left, or right, as long as new same-colored
pixels can be found. But you won’t find all pixels in a group on the first walk.
Rather, you have to do something similar to the backtracking done by the
regular expression matcher, described in Chapter 9. Whenever more than one
possible direction to proceed is seen, you must store all the directions you do
not take immediately and look at them later, when you finish your current
walk.

In a normal-sized picture, there are a lot of pixels. Thus, you must take care
to do the minimal amount of work required or your program will take a very
long time to run. For example, every walk must ignore pixels seen by previous
walks so that it does not redo work that has already been done.

I recommend calling fillRect for individual pixels when a pixel that should
be colored is found, and keeping some data structure that tells you about all
the pixels that have already been looked at.

337

“A student asked ‘The programmers of old used only simple
machines and no programming languages, yet they made beautiful
programs. Why do we use complicated machines and programming
languages?’. Fu-Tzu replied ‘The builders of old used only sticks and
clay, yet they made beautiful huts.”’

—Master Yuan-Ma, The Book of Programming

20 Node.js
So far, you have learned the JavaScript language and used it within a single
environment: the browser. This chapter and the next one will briefly introduce
you to Node.js, a program that allows you to apply your JavaScript skills
outside of the browser. With it, you can build anything from simple command-
line tools to dynamic HTTP servers.

These chapters aim to teach you the important ideas that Node.js builds on
and to give you enough information to write some useful programs for it. They
do not try to be a complete, or even a thorough, treatment of Node.

If you want to follow along and run the code in this chapter, start by going to
nodejs.org and following the installation instructions for your operating system.
Also refer to that website for further documentation about Node and its built-in
modules.

Background
One of the more difficult problems with writing systems that communicate over
the network is managing input and output—that is, the reading and writing of
data to and from the network, the hard drive, and other such devices. Moving
data around takes time, and scheduling it cleverly can make a big difference in
how quickly a system responds to the user or to network requests.

The traditional way to handle input and output is to have a function, such
as readFile, start reading a file and return only when the file has been fully
read. This is called synchronous I/O (I/O stands for input/output).

Node was initially conceived for the purpose of making asynchronous I/O
easy and convenient. We have seen asynchronous interfaces before, such as
a browser’s XMLHttpRequest object, discussed in Chapter 17. An asynchronous
interface allows the script to continue running while it does its work and calls
a callback function when it’s done. This is the way Node does all its I/O.

JavaScript lends itself well to a system like Node. It is one of the few program-
ming languages that does not have a built-in way to do I/O. Thus, JavaScript
could be fit onto Node’s rather eccentric approach to I/O without ending up
with two inconsistent interfaces. In 2009, when Node was being designed, peo-

338

http://nodejs.org

ple were already doing callback-based I/O in the browser, so the community
around the language was used to an asynchronous programming style.

Asynchronicity
I’ll try to illustrate synchronous versus asynchronous I/O with a small example,
where a program needs to fetch two resources from the Internet and then do
some simple processing with the result.

In a synchronous environment, the obvious way to perform this task is to
make the requests one after the other. This method has the drawback that
the second request will be started only when the first has finished. The total
time taken will be at least the sum of the two response times. This is not an
effective use of the machine, which will be mostly idle when it is transmitting
and receiving data over the network.

The solution to this problem, in a synchronous system, is to start additional
threads of control. (Refer to Chapter 14 for a previous discussion of threads.)
A second thread could start the second request, and then both threads wait
for their results to come back, after which they resynchronize to combine their
results.

In the following diagram, the thick lines represent time the program spends
running normally, and the thin lines represent time spent waiting for I/O. In
the synchronous model, the time taken by I/O is part of the timeline for a
given thread of control. In the asynchronous model, starting an I/O action
conceptually causes a split in the timeline. The thread that initiated the I/O
continues running, and the I/O itself is done alongside it, finally calling a
callback function when it is finished.

synchronous, single thread of control

synchronous, two threads of control

asynchronous

Another way to express this difference is that waiting for I/O to finish is implicit
in the synchronous model, while it is explicit, directly under our control, in the
asynchronous one. But asynchronicity cuts both ways. It makes expressing
programs that do not fit the straight-line model of control easier, but it also

339

makes expressing programs that do follow a straight line more awkward.
In Chapter 17, I already touched on the fact that all those callbacks add quite

a lot of noise and indirection to a program. Whether this style of asynchronicity
is a good idea in general can be debated. In any case, it takes some getting
used to.

But for a JavaScript-based system, I would argue that callback-style asyn-
chronicity is a sensible choice. One of the strengths of JavaScript is its sim-
plicity, and trying to add multiple threads of control to it would add a lot of
complexity. Though callbacks don’t tend to lead to simple code, as a concept,
they’re pleasantly simple yet powerful enough to write high-performance web
servers.

The node command
When Node.js is installed on a system, it provides a program called node, which
is used to run JavaScript files. Say you have a file hello.js, containing this
code:

var message = "Hello world";

console.log(message);

You can then run node from the command line like this to execute the program:

$ node hello.js

Hello world

The console.log method in Node does something similar to what it does in
the browser. It prints out a piece of text. But in Node, the text will go to the
process’ standard output stream, rather than to a browser’s JavaScript console.

If you run node without giving it a file, it provides you with a prompt at
which you can type JavaScript code and immediately see the result.

$ node

> 1 + 1

2

> [-1, -2, -3].map(Math.abs)

[1, 2, 3]

> process.exit (0)

$

The process variable, just like the console variable, is available globally in Node.
It provides various ways to inspect and manipulate the current program. The
exit method ends the process and can be given an exit status code, which tells

340

the program that started node (in this case, the command-line shell) whether
the program completed successfully (code zero) or encountered an error (any
other code).

To find the command-line arguments given to your script, you can read
process.argv, which is an array of strings. Note that it also includes the name
of the node command and your script name, so the actual arguments start at
index 2. If showargv.js simply contains the statement console.log(process.argv),
you could run it like this:

$ node showargv.js one --and two

["node", "/home/marijn/showargv.js", "one", "--and", "two"]

All the standard JavaScript global variables, such as Array, Math, and JSON, are
also present in Node’s environment. Browser-related functionality, such as
document and alert, is absent.

The global scope object, which is called window in the browser, has the more
sensible name global in Node.

Modules
Beyond the few variables I mentioned, such as console and process, Node puts
little functionality in the global scope. If you want to access other built-in
functionality, you have to ask the module system for it.

The CommonJS module system, based on the require function, was described
in Chapter 10. This system is built into Node and is used to load anything
from built-in modules to downloaded libraries to files that are part of your own
program.

When require is called, Node has to resolve the given string to an actual file
to load. Pathnames that start with "/", "./", or "../" are resolved relative to
the current module’s path, where "./" stands for the current directory, "../"

for one directory up, and "/" for the root of the file system. So if you ask for
"./world/world" from the file /home/marijn/elife/run.js, Node will try to load the
file /home/marijn/elife/world/world.js. The .js extension may be omitted.

When a string that does not look like a relative or absolute path is given to
require, it is assumed to refer to either a built-in module or a module installed in
a node_modules directory. For example, require("fs") will give you Node’s built-in
file system module, and require("elife") will try to load the library found in
node_modules/elife/. A common way to install such libraries is by using NPM,
which I will discuss in a moment.

To illustrate the use of require, let’s set up a simple project consisting of two

341

files. The first one is called main.js, which defines a script that can be called
from the command line to garble a string.

var garble = require ("./ garble ");

// Index 2 holds the first actual command -line argument

var argument = process.argv [2];

console.log(garble(argument));

The file garble.js defines a library for garbling strings, which can be used both
by the command-line tool defined earlier and by other scripts that need direct
access to a garbling function.

module.exports = function(string) {

return string.split ("").map(function(ch) {

return String.fromCharCode(ch.charCodeAt (0) + 5);

}).join ("");

};

Remember that replacing module.exports, rather than adding properties to it,
allows us to export a specific value from a module. In this case, we make the
result of requiring our garble file the garbling function itself.

The function splits the string it is given into single characters by splitting
on the empty string and then replaces each character with the character whose
code is five points higher. Finally, it joins the result back into a string.

We can now call our tool like this:

$ node main.js JavaScript

Of{fXhwnuy

Installing with NPM
NPM, which was briefly discussed in Chapter 10, is an online repository of
JavaScript modules, many of which are specifically written for Node. When
you install Node on your computer, you also get a program called npm, which
provides a convenient interface to this repository.

For example, one module you will find on NPM is figlet, which can convert
text into ASCII art—drawings made out of text characters. The following
transcript shows how to install and use it:

$ npm install figlet

npm GET https :// registry.npmjs.org/figlet

342

npm 200 https :// registry.npmjs.org/figlet

npm GET https :// registry.npmjs.org/figlet/-/figlet -1.0.9. tgz

npm 200 https :// registry.npmjs.org/figlet/-/figlet -1.0.9. tgz

figlet@1 .0.9 node_modules/figlet

$ node

> var figlet = require (" figlet ");

> figlet.text("Hello world!", function(error , data) {

if (error)

console.error(error);

else

console.log(data);

});

_ _ _ _ _ _ _

| | | | ___| | | ___ __ _____ _ __| | __| | |

| |_| |/ _ \ | |/ _ \ \ \ /\ / / _ \| ' __| |/ _` | |

| _ | __/ | | (_) | \ V V / (_) | | | | (_| |_|

|_| |_|___|_|_|___/ _/_/ ___/|_| |_|__,_(_)

After running npm install, NPM will have created a directory called node_modules

. Inside that directory will be a figlet directory, which contains the library.
When we run node and call require("figlet"), this library is loaded, and we can
call its text method to draw some big letters.

Somewhat unexpectedly perhaps, instead of simply returning the string that
makes up the big letters, figlet.text takes a callback function that it passes its
result to. It also passes the callback another argument, error, which will hold
an error object when something goes wrong or null when everything is all right.

This is a common pattern in Node code. Rendering something with figlet

requires the library to read a file that contains the letter shapes. Reading
that file from disk is an asynchronous operation in Node, so figlet.text can’t
immediately return its result. Asynchronicity is infectious, in a way—every
function that calls an asynchronous function must itself become asynchronous.

There is much more to NPM than npm install. It reads package.json files,
which contain JSON-encoded information about a program or library, such
as which other libraries it depends on. Doing npm install in a directory that
contains such a file will automatically install all dependencies, as well as their
dependencies. The npm tool is also used to publish libraries to NPM’s online
repository of packages so that other people can find, download, and use them.

This book won’t delve further into the details of NPM usage. Refer to
npmjs.org for further documentation and for an easy way to search for libraries.

343

http://npmjs.org

The file system module
One of the most commonly used built-in modules that comes with Node is the
"fs" module, which stands for file system. This module provides functions for
working with files and directories.

For example, there is a function called readFile, which reads a file and then
calls a callback with the file’s contents.

var fs = require ("fs");

fs.readFile ("file.txt", "utf8", function(error , text) {

if (error)

throw error;

console.log("The file contained :", text);

});

The second argument to readFile indicates the character encoding used to de-
code the file into a string. There are several ways in which text can be encoded
to binary data, but most modern systems use UTF-8 to encode text, so unless
you have reasons to believe another encoding is used, passing "utf8" when read-
ing a text file is a safe bet. If you do not pass an encoding, Node will assume
you are interested in the binary data and will give you a Buffer object instead
of a string. This is an array-like object that contains numbers representing the
bytes in the files.

var fs = require ("fs");

fs.readFile ("file.txt", function(error , buffer) {

if (error)

throw error;

console.log("The file contained", buffer.length , "bytes.",

"The first byte is:", buffer [0]);

});

A similar function, writeFile, is used to write a file to disk.

var fs = require ("fs");

fs.writeFile (" graffiti.txt", "Node was here", function(err) {

if (err)

console.log(" Failed to write file:", err);

else

console.log("File written .");

});

Here, it was not necessary to specify the encoding since writeFile will assume
that if it is given a string to write, rather than a Buffer object, it should write
it out as text using its default character encoding, which is UTF-8.

344

The "fs" module contains many other useful functions: readdir will return
the files in a directory as an array of strings, stat will retrieve information
about a file, rename will rename a file, unlink will remove one, and so on. See
the documentation at nodejs.org for specifics.

Many of the functions in "fs" come in both synchronous and asynchronous
variants. For example, there is a synchronous version of readFile called readFileSync

.

var fs = require ("fs");

console.log(fs.readFileSync ("file.txt", "utf8"));

Synchronous functions require less ceremony to use and can be useful in simple
scripts, where the extra speed provided by asynchronous I/O is irrelevant.
But note that while such a synchronous operation is being performed, your
program will be stopped entirely. If it should be responding to the user or to
other machines on the network, being stuck on synchronous I/O might produce
annoying delays.

The HTTP module
Another central module is called "http". It provides functionality for running
HTTP servers and making HTTP requests.

This is all it takes to start a simple HTTP server:

var http = require ("http");

var server = http.createServer(function(request , response) {

response.writeHead (200, {"Content -Type": "text/html "});

response.write("<h1>Hello!</h1 ><p>You asked for <code >" +

request.url + "</code ></p>");

response.end();

});

server.listen (8000);

If you run this script on your own machine, you can point your web browser
at http://localhost:8000/hello to make a request to your server. It will respond
with a small HTML page.

The function passed as an argument to createServer is called every time a
client tries to connect to the server. The request and response variables are
objects representing the incoming and outgoing data. The first contains infor-
mation about the request, such as its url property, which tells us to what URL
the request was made.

To send something back, you call methods on the response object. The first,

345

http://nodejs.org
http://localhost:8000/hello

writeHead, will write out the response headers (see Chapter 17). You give it
the status code (200 for “OK” in this case) and an object that contains header
values. Here we tell the client that we will be sending back an HTML document.

Next, the actual response body (the document itself) is sent with response.

write. You are allowed to call this method multiple times if you want to send
the response piece by piece, possibly streaming data to the client as it becomes
available. Finally, response.end signals the end of the response.

The call to server.listen causes the server to start waiting for connections on
port 8000. This is the reason you have to connect to localhost:8000, rather than
just localhost (which would use the default port, 80), to speak to this server.

To stop running a Node script like this, which doesn’t finish automatically
because it is waiting for further events (in this case, network connections), press
Ctrl-C.

A real web server usually does more than the one in the previous example—
it looks at the request’s method (the method property) to see what action the
client is trying to perform and at the request’s URL to find out which resource
this action is being performed on. You’ll see a more advanced server later in
this chapter.

To act as an HTTP client, we can use the request function in the "http"

module.

var http = require ("http");

var request = http.request ({

hostname: "eloquentjavascript.net",

path: "/20 _node.html",

method: "GET",

headers: {Accept: "text/html"}

}, function(response) {

console.log(" Server responded with status code",

response.statusCode);

});

request.end();

The first argument to request configures the request, telling Node what server
to talk to, what path to request from that server, which method to use, and
so on. The second argument is the function that should be called when a
response comes in. It is given an object that allows us to inspect the response,
for example to find out its status code.

Just like the response object we saw in the server, the object returned by
request allows us to stream data into the request with the write method and
finish the request with the end method. The example does not use write because
GET requests should not contain data in their request body.

346

To make requests to secure HTTP (HTTPS) URLs, Node provides a package
called https, which contains its own request function, similar to http.request.

Streams
We have seen two examples of writable streams in the HTTP examples—
namely, the response object that the server could write to and the request
object that was returned from http.request.

Writable streams are a widely used concept in Node interfaces. All writable
streams have a write method, which can be passed a string or a Buffer object.
Their end method closes the stream and, if given an argument, will also write
out a piece of data before it does so. Both of these methods can also be given
a callback as an additional argument, which they will call when the writing to
or closing of the stream has finished.

It is possible to create a writable stream that points at a file with the fs.

createWriteStream function. Then you can use the write method on the resulting
object to write the file one piece at a time, rather than in one shot as with
fs.writeFile.

Readable streams are a little more involved. Both the request variable that
was passed to the HTTP server’s callback function and the response variable
passed to the HTTP client are readable streams. (A server reads requests and
then writes responses, whereas a client first writes a request and then reads a
response.) Reading from a stream is done using event handlers, rather than
methods.

Objects that emit events in Node have a method called on that is similar to
the addEventListener method in the browser. You give it an event name and then
a function, and it will register that function to be called whenever the given
event occurs.

Readable streams have "data" and "end" events. The first is fired every time
some data comes in, and the second is called whenever the stream is at its end.
This model is most suited for “streaming” data, which can be immediately
processed, even when the whole document isn’t available yet. A file can be
read as a readable stream by using the fs.createReadStream function.

The following code creates a server that reads request bodies and streams
them back to the client as all-uppercase text:

var http = require ("http");

http.createServer(function(request , response) {

response.writeHead (200, {"Content -Type": "text/plain "});

request.on("data", function(chunk) {

347

response.write(chunk.toString ().toUpperCase ());

});

request.on("end", function () {

response.end();

});

}).listen (8000);

The chunk variable passed to the data handler will be a binary Buffer, which we
can convert to a string by calling toString on it, which will decode it using the
default encoding (UTF-8).

The following piece of code, if run while the uppercasing server is running,
will send a request to that server and write out the response it gets:

var http = require ("http");

var request = http.request ({

hostname: "localhost",

port: 8000,

method: "POST"

}, function(response) {

response.on("data", function(chunk) {

process.stdout.write(chunk.toString ());

});

});

request.end("Hello server ");

The example writes to process.stdout (the process’ standard output, as a writable
stream) instead of using console.log. We can’t use console.log because it adds
an extra newline character after each piece of text that it writes, which isn’t
appropriate here.

A simple file server
Let’s combine our newfound knowledge about HTTP servers and talking to
the file system and create a bridge between them: an HTTP server that allows
remote access to a file system. Such a server has many uses. It allows web
applications to store and share data or give a group of people shared access to
a bunch of files.

When we treat files as HTTP resources, the HTTP methods GET, PUT, and
DELETE can be used to read, write, and delete the files, respectively. We will
interpret the path in the request as the path of the file that the request refers
to.

We probably don’t want to share our whole file system, so we’ll interpret
these paths as starting in the server’s working directory, which is the directory

348

in which it was started. If I ran the server from /home/marijn/public/ (or C:\

Users\marijn\public\ on Windows), then a request for /file.txt should refer to
/home/marijn/public/file.txt (or C:\Users\marijn\public\file.txt).

We’ll build the program piece by piece, using an object called methods to store
the functions that handle the various HTTP methods.

var http = require ("http"), fs = require ("fs");

var methods = Object.create(null);

http.createServer(function(request , response) {

function respond(code , body , type) {

if (!type) type = "text/plain";

response.writeHead(code , {"Content -Type": type});

if (body && body.pipe)

body.pipe(response);

else

response.end(body);

}

if (request.method in methods)

methods[request.method](urlToPath(request.url),

respond , request);

else

respond (405, "Method " + request.method +

" not allowed .");

}).listen (8000);

This starts a server that just returns 405 error responses, which is the code
used to indicate that a given method isn’t handled by the server.

The respond function is passed to the functions that handle the various meth-
ods and acts as a callback to finish the request. It takes an HTTP status code,
a body, and optionally a content type as arguments. If the value passed as the
body is a readable stream, it will have a pipe method, which is used to forward
a readable stream to a writable stream. If not, it is assumed to be either null

(no body) or a string and is passed directly to the response’s end method.
To get a path from the URL in the request, the urlToPath function uses Node’s

built-in "url" module to parse the URL. It takes its pathname, which will be
something like /file.txt, decodes that to get rid of the %20-style escape codes,
and prefixes a single dot to produce a path relative to the current directory.

function urlToPath(url) {

var path = require ("url").parse(url).pathname;

return "." + decodeURIComponent(path);

}

349

If you are worried about the security of the urlToPath function, you are right.
We will return to that in the exercises.

We will set up the GET method to return a list of files when reading a directory
and to return the file’s content when reading a regular file.

One tricky question is what kind of Content-Type header we should add when
returning a file’s content. Since these files could be anything, our server can’t
simply return the same type for all of them. But NPM can help with that.
The mime package (content type indicators like text/plain are also called MIME
types) knows the correct type for a huge number of file extensions.

If you run the following npm command in the directory where the server script
lives, you’ll be able to use require("mime") to get access to the library:

$ npm install mime@1 .4.0

npm http GET https :// registry.npmjs.org/mime

npm http 304 https :// registry.npmjs.org/mime

mime@1 .4.0 node_modules/mime

When a requested file does not exist, the correct HTTP error code to return is
404. We will use fs.stat, which looks up information on a file, to find out both
whether the file exists and whether it is a directory.

methods.GET = function(path , respond) {

fs.stat(path , function(error , stats) {

if (error && error.code == "ENOENT ")

respond (404, "File not found ");

else if (error)

respond (500, error.toString ());

else if (stats.isDirectory ())

fs.readdir(path , function(error , files) {

if (error)

respond (500, error.toString ());

else

respond (200, files.join ("\n"));

});

else

respond (200, fs.createReadStream(path),

require ("mime").lookup(path));

});

};

Because it has to touch the disk and thus might take a while, fs.stat is asyn-
chronous. When the file does not exist, fs.stat will pass an error object with
a code property of "ENOENT" to its callback. It would be nice if Node defined
different subtypes of Error for different types of error, but it doesn’t. Instead,

350

it just puts obscure, Unix-inspired codes in there.
We are going to report any errors we didn’t expect with status code 500,

which indicates that the problem exists in the server, as opposed to codes
starting with 4 (such as 404), which refer to bad requests. There are some sit-
uations in which this is not entirely accurate, but for a small example program
like this, it will have to be good enough.

The stats object returned by fs.stat tells us a number of things about a file,
such as its size (size property) and its modification date (mtime property). Here
we are interested in the question of whether it is a directory or a regular file,
which the isDirectory method tells us.

We use fs.readdir to read the list of files in a directory and, in yet another
callback, return it to the user. For normal files, we create a readable stream
with fs.createReadStream and pass it to respond, along with the content type that
the "mime" module gives us for the file’s name.

The code to handle DELETE requests is slightly simpler.

methods.DELETE = function(path , respond) {

fs.stat(path , function(error , stats) {

if (error && error.code == "ENOENT ")

respond (204);

else if (error)

respond (500, error.toString ());

else if (stats.isDirectory ())

fs.rmdir(path , respondErrorOrNothing(respond));

else

fs.unlink(path , respondErrorOrNothing(respond));

});

};

You may be wondering why trying to delete a nonexistent file returns a 204
status, rather than an error. When the file that is being deleted is not there, you
could say that the request’s objective is already fulfilled. The HTTP standard
encourages people to make requests idempotent, which means that applying
them multiple times does not produce a different result.

function respondErrorOrNothing(respond) {

return function(error) {

if (error)

respond (500, error.toString ());

else

respond (204);

};

}

351

When an HTTP response does not contain any data, the status code 204 (“no
content”) can be used to indicate this. Since we need to provide callbacks that
either report an error or return a 204 response in a few different situations, I
wrote a respondErrorOrNothing function that creates such a callback.

This is the handler for PUT requests:

methods.PUT = function(path , respond , request) {

var outStream = fs.createWriteStream(path);

outStream.on("error", function(error) {

respond (500, error.toString ());

});

outStream.on(" finish", function () {

respond (204);

});

request.pipe(outStream);

};

Here, we don’t need to check whether the file exists—if it does, we’ll just
overwrite it. We again use pipe to move data from a readable stream to a
writable one, in this case from the request to the file. If creating the stream
fails, an "error" event is raised for it, which we report in our response. When the
data is transferred successfully, pipe will close both streams, which will cause
a "finish" event to fire on the writable stream. When that happens, we can
report success to the client with a 204 response.

The full script for the server is available at eloquentjavascript.net/2nd_edition/code/file_server.js.
You can download that and run it with Node to start your own file server. And
of course, you can modify and extend it to solve this chapter’s exercises or to
experiment.

The command-line tool curl, widely available on Unix-like systems, can be
used to make HTTP requests. The following session briefly tests our server.
Note that -X is used to set the request’s method and -d is used to include a
request body.

$ curl http :// localhost :8000/ file.txt

File not found

$ curl -X PUT -d hello http :// localhost :8000/ file.txt

$ curl http :// localhost :8000/ file.txt

hello

$ curl -X DELETE http :// localhost :8000/ file.txt

$ curl http :// localhost :8000/ file.txt

File not found

The first request for file.txt fails since the file does not exist yet. The PUT

request creates the file, and behold, the next request successfully retrieves it.

352

http://eloquentjavascript.net/2nd_{}edition/code/file_{}server.js

After deleting it with a DELETE request, the file is again missing.

Error handling
In the code for the file server, there are six places where we are explicitly rout-
ing exceptions that we don’t know how to handle into error responses. Because
exceptions aren’t automatically propagated to callbacks but rather passed to
them as arguments, they have to be handled explicitly every time. This com-
pletely defeats the advantage of exception handling, namely, the ability to
centralize the handling of failure conditions.

What happens when something actually throws an exception in this system?
Since we are not using any try blocks, the exception will propagate to the top
of the call stack. In Node, that aborts the program and writes information
about the exception (including a stack trace) to the program’s standard error
stream.

This means that our server will crash whenever a problem is encountered in
the server’s code itself, as opposed to asynchronous problems, which will be
passed as arguments to the callbacks. If we wanted to handle all exceptions
raised during the handling of a request, to make sure we send a response, we
would have to add try/catch blocks to every callback.

This is not workable. Many Node programs are written to make as little use
of exceptions as possible, with the assumption that if an exception is raised, it
is not something the program can handle, and crashing is the right response.

Another approach is to use promises, which were introduced in Chapter
17. Those catch exceptions raised by callback functions and propagate them
as failures. It is possible to load a promise library in Node and use that to
manage your asynchronous control. Few Node libraries integrate promises, but
it is often trivial to wrap them. The excellent "promise" module from NPM
contains a function called denodeify, which takes an asynchronous function like
fs.readFile and converts it to a promise-returning function.

var Promise = require (" promise ");

var fs = require ("fs");

var readFile = Promise.denodeify(fs.readFile);

readFile ("file.txt", "utf8").then(function(content) {

console.log("The file contained: " + content);

}, function(error) {

console.log(" Failed to read file: " + error);

});

353

For comparison, I’ve written another version of the file server based on promises,
which you can find at eloquentjavascript.net/2nd_edition/code/file_server_promises.js.
It is slightly cleaner because functions can now return their results, rather than
having to call callbacks, and the routing of exceptions is implicit, rather than
explicit.

I’ll list a few lines from the promise-based file server to illustrate the difference
in the style of programming.

The fsp object that is used by this code contains promise-style variants of
a number of fs functions, wrapped by Promise.denodeify. The object returned
from the method handler, with code and body properties, will become the final
result of the chain of promises, and it will be used to determine what kind of
response to send to the client.

methods.GET = function(path) {

return inspectPath(path).then(function(stats) {

if (!stats) // Does not exist

return {code: 404, body: "File not found "};

else if (stats.isDirectory ())

return fsp.readdir(path).then(function(files) {

return {code: 200, body: files.join ("\n")};

});

else

return {code: 200,

type: require ("mime").lookup(path),

body: fs.createReadStream(path)};

});

};

function inspectPath(path) {

return fsp.stat(path).then(null , function(error) {

if (error.code == "ENOENT ") return null;

else throw error;

});

}

The inspectPath function is a simple wrapper around fs.stat, which handles the
case where the file is not found. In that case, we replace the failure with a
success that yields null. All other errors are allowed to propagate. When the
promise that is returned from these handlers fails, the HTTP server responds
with a 500 status code.

354

http://eloquentjavascript.net/2nd_{}edition/code/file_{}server_{}promises.js

Summary
Node is a nice, straightforward system that lets us run JavaScript in a non-
browser context. It was originally designed for network tasks to play the role
of a node in a network. But it lends itself to all kinds of scripting tasks, and
if writing JavaScript is something you enjoy, automating everyday tasks with
Node works wonderfully.

NPM provides libraries for everything you can think of (and quite a few
things you’d probably never think of), and it allows you to fetch and install
those libraries by running a simple command. Node also comes with a number
of built-in modules, including the "fs" module, for working with the file system,
and the "http" module, for running HTTP servers and making HTTP requests.

All input and output in Node is done asynchronously, unless you explicitly
use a synchronous variant of a function, such as fs.readFileSync. You provide
callback functions, and Node will call them at the appropriate time, when the
I/O you asked for has finished.

Exercises
Content negotiation, again
In Chapter 17, the first exercise was to make several requests to eloquent-
javascript.net/author, asking for different types of content by passing different
Accept headers.

Do this again, using Node’s http.request function. Ask for at least the media
types text/plain, text/html, and application/json. Remember that headers to a
request can be given as an object, in the headers property of http.request’s first
argument.

Write out the content of the responses to each request.

Fixing a leak
For easy remote access to some files, I might get into the habit of having the
file server defined in this chapter running on my machine, in the /home/marijn

/public directory. Then, one day, I find that someone has gained access to all
the passwords I stored in my browser.

What happened?
If it isn’t clear to you yet, think back to the urlToPath function, defined like

this:

355

http://eloquentjavascript.net/author
http://eloquentjavascript.net/author

function urlToPath(url) {

var path = require ("url").parse(url).pathname;

return "." + decodeURIComponent(path);

}

Now consider the fact that paths passed to the "fs" functions can be relative—
they may contain "../" to go up a directory. What happens when a client sends
requests to URLs like the ones shown here?

http :// myhostname :8000/../. config/config/google -chrome/Default/Web

%20 Data

http :// myhostname :8000/../. ssh/id_dsa

http :// myhostname :8000/../../../ etc/passwd

Change urlToPath to fix this problem. Take into account the fact that Node on
Windows allows both forward slashes and backslashes to separate directories.

Also, meditate on the fact that as soon as you expose some half-baked system
on the Internet, the bugs in that system might be used to do bad things to
your machine.

Creating directories
Though the DELETE method is wired up to delete directories (using fs.rmdir), the
file server currently does not provide any way to create a directory.

Add support for a method MKCOL, which should create a directory by calling
fs.mkdir. MKCOL is not one of the basic HTTP methods, but it does exist, for this
same purpose, in the WebDAV standard, which specifies a set of extensions to
HTTP, making it suitable for writing resources, not just reading them.

A public space on the web
Since the file server serves up any kind of file and even includes the right Content

-Type header, you can use it to serve a website. Since it allows everybody to
delete and replace files, it would be an interesting kind of website: one that
can be modified, vandalized, and destroyed by everybody who takes the time
to create the right HTTP request. Still, it would be a website.

Write a basic HTML page that includes a simple JavaScript file. Put the
files in a directory served by the file server and open them in your browser.

Next, as an advanced exercise or even a weekend project, combine all the
knowledge you gained from this book to build a more user-friendly interface
for modifying the website from inside the website.

356

Use an HTML form (Chapter 18) to edit the content of the files that make
up the website, allowing the user to update them on the server by using HTTP
requests as described in Chapter 17.

Start by making only a single file editable. Then make it so that the user
can select which file to edit. Use the fact that our file server returns lists of
files when reading a directory.

Don’t work directly in the code on the file server, since if you make a mistake
you are likely to damage the files there. Instead, keep your work outside of the
publicly accessible directory and copy it there when testing.

If your computer is directly connected to the Internet, without a firewall,
router, or other interfering device in between, you might be able to invite
a friend to use your website. To check, go to whatismyip.com, copy the IP
address it gives you into the address bar of your browser, and add :8000 after it
to select the right port. If that brings you to your site, it is online for everybody
to see.

357

http://www.whatismyip.com/

21 Project: Skill-Sharing Website
A skill-sharing meeting is an event where people with a shared interest come
together and give small, informal presentations about things they know. At a
gardening skill-sharing meeting, someone might explain how to cultivate celery.
Or in a programming-oriented skill-sharing group, you could drop by and tell
everybody about Node.js.

Such meetups, also often called users’ groups when they are about computers,
are a great way to broaden your horizon, learn about new developments, or
simply meet people with similar interests. Many large cities have a JavaScript
meetup. They are typically free to attend, and I’ve found the ones I’ve visited
to be friendly and welcoming.

In this final project chapter, our goal is to set up a website for managing
talks given at a skill-sharing meeting. Imagine a small group of people meeting
up regularly in a member’s office to talk about unicycling. The problem is that
when the previous organizer of the meetings moved to another town, nobody
stepped forward to take over this task. We want a system that will let the
participants propose and discuss talks among themselves, without a central
organizer.

(!interactive Just like in the previous chapter, the code in this chapter is written
for Node.js, and running it directly in the HTML page that you are looking
at is unlikely to work. !)The full code for the project can be downloaded from
eloquentjavascript.net/2nd_edition/code/skillsharing.zip.

358

http://eloquentjavascript.net/2nd_{}edition/code/skillsharing.zip

Design
There is a server part to this project, written for Node.js, and a client part,
written for the browser. The server stores the system’s data and provides it to
the client. It also serves the HTML and JavaScript files that implement the
client-side system.

The server keeps a list of talks proposed for the next meeting, and the client
shows this list. Each talk has a presenter name, a title, a summary, and a
list of comments associated with it. The client allows users to propose new
talks (adding them to the list), delete talks, and comment on existing talks.
Whenever the user makes such a change, the client makes an HTTP request to
tell the server about it.

The application will be set up to show a live view of the current proposed talks
and their comments. Whenever someone, somewhere, submits a new talk or
adds a comment, all people who have the page open in their browsers should
immediately see the change. This poses a bit of a challenge since there is no
way for a web server to open up a connection to a client, nor is there a good
way to know which clients currently are looking at a given website.

A common solution to this problem is called long polling, which happens to
be one of the motivations for Node’s design.

Long polling
To be able to immediately notify a client that something changed, we need
a connection to that client. Since web browsers do not traditionally accept
connections and clients are usually behind devices that would block such con-

359

nections anyway, having the server initiate this connection is not practical.
We can arrange for the client to open the connection and keep it around so

that the server can use it to send information when it needs to do so.
But an HTTP request allows only a simple flow of information, where the

client sends a request, the server comes back with a single response, and that
is it. There is a technology called web sockets, supported by modern browsers,
which makes it possible to open connections for arbitrary data exchange. But
using them properly is somewhat tricky.

In this chapter, we will use a relatively simple technique, long polling, where
clients continuously ask the server for new information using regular HTTP
requests, and the server simply stalls its answer when it has nothing new to
report.

As long as the client makes sure it constantly has a polling request open, it
will receive information from the server immediately. For example, if Alice has
our skill-sharing application open in her browser, that browser will have made
a request for updates and be waiting for a response to that request. When
Bob submits a talk on Extreme Downhill Unicycling, the server will notice
that Alice is waiting for updates and send information about the new talk as
a response to her pending request. Alice’s browser will receive the data and
update the screen to show the talk.

To prevent connections from timing out (being aborted because of a lack of
activity), long-polling techniques usually set a maximum time for each request,
after which the server will respond anyway, even though it has nothing to
report, and the client will start a new request. Periodically restarting the
request also makes the technique more robust, allowing clients to recover from
temporary connection failures or server problems.

A busy server that is using long polling may have thousands of waiting
requests, and thus TCP connections, open. Node, which makes it easy to
manage many connections without creating a separate thread of control for
each one, is a good fit for such a system.

HTTP interface
Before we start fleshing out either the server or the client, let’s think about the
point where they touch: the HTTP interface over which they communicate.

We will base our interface on JSON, and like in the file server from Chapter
20, we’ll try to make good use of HTTP methods. The interface is centered
around the /talks path. Paths that do not start with /talks will be used for
serving static files—the HTML and JavaScript code that implements the client-

360

side system.
A GET request to /talks returns a JSON document like this:

{" serverTime ": 1405438911833 ,

"talks": [{" title": "Unituning",

"presenter ": "Carlos",

"summary ": "Modifying your cycle for extra style",

"comment ": []}]}

The serverTime field will be used to make reliable long polling possible. I will
return to it later.

Creating a new talk is done by making a PUT request to a URL like /talks

/Unituning, where the part after the second slash is the title of the talk. The
PUT request’s body should contain a JSON object that has presenter and summary

properties.
Since talk titles may contain spaces and other characters that may not appear

normally in a URL, title strings must be encoded with the encodeURIComponent

function when building up such a URL.

console.log("/ talks/" + encodeURIComponent ("How to Idle"));

// → /talks/How%20to%20 Idle

A request to create a talk about idling might look something like this:

PUT /talks/How%20to%20 Idle HTTP /1.1

Content -Type: application/json

Content -Length: 92

{" presenter ": "Dana",

"summary ": "Standing still on a unicycle "}

Such URLs also support GET requests to retrieve the JSON representation of a
talk and DELETE requests to delete a talk.

Adding a comment to a talk is done with a POST request to a URL like /talks

/Unituning/comments, with a JSON object that has author and message properties
as the body of the request.

POST /talks/Unituning/comments HTTP /1.1

Content -Type: application/json

Content -Length: 72

{" author ": "Alice",

"message ": "Will you talk about raising a cycle ?"}

To support long polling, GET requests to /talks may include a query parameter

361

called changesSince, which is used to indicate that the client is interested in
updates that happened since a given point in time. When there are such
changes, they are immediately returned. When there aren’t, the response is
delayed until something happens or until a given time period (we will use 90
seconds) has elapsed.

The time must be indicated as the number of milliseconds elapsed since the
start of 1970, the same type of number that is returned by Date.now(). To
ensure that it receives all updates and doesn’t receive the same update more
than once, the client must pass the time at which it last received information
from the server. The server’s clock might not be exactly in sync with the
client’s clock, and even if it were, it would be impossible for the client to know
the precise time at which the server sent a response because transferring data
over the network takes time.

This is the reason for the existence of the serverTime property in responses
sent to GET requests to /talks. That property tells the client the precise time,
from the server’s perspective, at which the data it receives was created. The
client can then simply store this time and pass it along in its next polling
request to make sure that it receives exactly the updates that it has not seen
before.

GET /talks?changesSince =1405438911833 HTTP /1.1

(time passes)

HTTP /1.1 200 OK

Content -Type: application/json

Content -Length: 95

{" serverTime ": 1405438913401 ,

"talks": [{" title": "Unituning",

"deleted ": true }]}

When a talk has been changed, has been newly created, or has a comment
added, the full representation of the talk is included in the response to the
client’s next polling request. When a talk is deleted, only its title and the
property deleted are included. The client can then add talks with titles it has
not seen before to its display, update talks that it was already showing, and
remove those that were deleted.

The protocol described in this chapter does not do any access control. Ev-
erybody can comment, modify talks, and even delete them. Since the Internet
is filled with hooligans, putting such a system online without further protection
is likely to end in disaster.

362

A simple solution would be to put the system behind a reverse proxy, which
is an HTTP server that accepts connections from outside the system and for-
wards them to HTTP servers that are running locally. Such a proxy can be
configured to require a username and password, and you could make sure only
the participants in the skill-sharing group have this password.

The server
Let’s start by writing the server-side part of the program. The code in this
section runs on Node.js.

Routing
Our server will use http.createServer to start an HTTP server. In the function
that handles a new request, we must distinguish between the various kinds of
requests (as determined by the method and the path) that we support. This
can be done with a long chain of if statements, but there is a nicer way.

A router is a component that helps dispatch a request to the function that
can handle it. You can tell the router, for example, that PUT requests with a
path that matches the regular expression /^\/talks\/([^\/]+)$/ (which matches
/talks/ followed by a talk title) can be handled by a given function. In addition,
it can help extract the meaningful parts of the path, in this case the talk title,
wrapped in parentheses in the regular expression and pass those to the handler
function.

There are a number of good router packages on NPM, but here we will write
one ourselves to illustrate the principle.

This is router.js, which we will later require from our server module:

var Router = module.exports = function () {

this.routes = [];

};

Router.prototype.add = function(method , url , handler) {

this.routes.push({ method: method ,

url: url ,

handler: handler });

};

Router.prototype.resolve = function(request , response) {

var path = require ("url").parse(request.url).pathname;

363

return this.routes.some(function(route) {

var match = route.url.exec(path);

if (!match || route.method != request.method)

return false;

var urlParts = match.slice (1).map(decodeURIComponent);

route.handler.apply(null , [request , response]

.concat(urlParts));

return true;

});

};

The module exports the Router constructor. A router object allows new handlers
to be registered with the add method and can resolve requests with its resolve

method.
The latter will return a Boolean that indicates whether a handler was found.

The some method on the array of routes will try the routes one at a time (in the
order in which they were defined) and stop, returning true, when a matching
one is found.

The handler functions are called with the request and response objects. When
the regular expression that matches the URL contains any groups, the strings
they match are passed to the handler as extra arguments. These strings have
to be URL-decoded since the raw URL contains %20-style codes.

Serving files
When a request matches none of the request types defined in our router, the
server must interpret it as a request for a file in the public directory. It would
be possible to use the file server defined in Chapter 20 to serve such files, but
we neither need nor want to support PUT and DELETE requests on files, and we
would like to have advanced features such as support for caching. So let’s use
a solid, well-tested static file server from NPM instead.

I opted for ecstatic. This isn’t the only such server on NPM, but it works
well and fits our purposes. The ecstatic module exports a function that can be
called with a configuration object to produce a request handler function. We
use the root option to tell the server where it should look for files. The handler
function accepts request and response parameters and can be passed directly to
createServer to create a server that serves only files. We want to first check for
requests that we handle specially, though, so we wrap it in another function.

var http = require ("http");

var Router = require ("./ router ");

364

var ecstatic = require (" ecstatic ");

var fileServer = ecstatic ({root: "./ public "});

var router = new Router ();

http.createServer(function(request , response) {

if (! router.resolve(request , response))

fileServer(request , response);

}).listen (8000);

The respond and respondJSON helper functions are used throughout the server
code to send off responses with a single function call.

function respond(response , status , data , type) {

response.writeHead(status , {

"Content -Type": type || "text/plain"

});

response.end(data);

}

function respondJSON(response , status , data) {

respond(response , status , JSON.stringify(data),

"application/json");

}

Talks as resources
The server keeps the talks that have been proposed in an object called talks,
whose property names are the talk titles. These will be exposed as HTTP
resources under /talks/[title], so we need to add handlers to our router that
implement the various methods that clients can use to work with them.

The handler for requests that GET a single talk must look up the talk and
respond either with the talk’s JSON data or with a 404 error response.

var talks = Object.create(null);

router.add("GET", /^\/ talks \/([^\/]+)$/,

function(request , response , title) {

if (title in talks)

respondJSON(response , 200, talks[title]);

else

respond(response , 404, "No talk '" + title + " ' found");

});

Deleting a talk is done by removing it from the talks object.

365

router.add(" DELETE", /^\/ talks \/([^\/]+)$/,

function(request , response , title) {

if (title in talks) {

delete talks[title];

registerChange(title);

}

respond(response , 204, null);

});

The registerChange function, which we will define later, notifies waiting long-
polling requests about the change.

To retrieve the content of JSON-encoded request bodies, we define a function
called readStreamAsJSON, which reads all content from a stream, parses it as JSON,
and then calls a callback function.

function readStreamAsJSON(stream , callback) {

var data = "";

stream.on("data", function(chunk) {

data += chunk;

});

stream.on("end", function () {

var result , error;

try { result = JSON.parse(data); }

catch (e) { error = e; }

callback(error , result);

});

stream.on("error", function(error) {

callback(error);

});

}

One handler that needs to read JSON responses is the PUT handler, which is used
to create new talks. It has to check whether the data it was given has presenter

and summary properties, which are strings. Any data coming from outside the
system might be nonsense, and we don’t want to corrupt our internal data
model, or even crash, when bad requests come in.

If the data looks valid, the handler stores an object that represents the new
talk in the talks object, possibly overwriting an existing talk with this title,
and again calls registerChange.

router.add("PUT", /^\/ talks \/([^\/]+)$/,

function(request , response , title) {

readStreamAsJSON(request , function(error , talk) {

if (error) {

respond(response , 400, error.toString ());

366

} else if (!talk ||

typeof talk.presenter != "string" ||

typeof talk.summary != "string ") {

respond(response , 400, "Bad talk data");

} else {

talks[title] = {title: title ,

presenter: talk.presenter ,

summary: talk.summary ,

comments: []};

registerChange(title);

respond(response , 204, null);

}

});

});

Adding a comment to a talk works similarly. We use readStreamAsJSON to get the
content of the request, validate the resulting data, and store it as a comment
when it looks valid.

router.add("POST", /^\/ talks \/([^\/]+) \/ comments$/,

function(request , response , title) {

readStreamAsJSON(request , function(error , comment) {

if (error) {

respond(response , 400, error.toString ());

} else if (! comment ||

typeof comment.author != "string" ||

typeof comment.message != "string ") {

respond(response , 400, "Bad comment data");

} else if (title in talks) {

talks[title]. comments.push(comment);

registerChange(title);

respond(response , 204, null);

} else {

respond(response , 404, "No talk '" + title + " ' found");

}

});

});

Trying to add a comment to a nonexistent talk should return a 404 error, of
course.

Long-polling support
The most interesting aspect of the server is the part that handles long polling.
When a GET request comes in for /talks, it can be either a simple request for all

367

talks or a request for updates, with a changesSince parameter.
There will be various situations in which we have to send a list of talks to

the client, so we first define a small helper function that attaches the serverTime

field to such responses.

function sendTalks(talks , response) {

respondJSON(response , 200, {

serverTime: Date.now(),

talks: talks

});

}

The handler itself needs to look at the query parameters in the request’s URL
to see whether a changesSince parameter is given. If you give the "url" module’s
parse function a second argument of true, it will also parse the query part of
a URL. The object it returns will have a query property, which holds another
object that maps parameter names to values.

router.add("GET", /^\/ talks$/, function(request , response) {

var query = require ("url").parse(request.url , true).query;

if (query.changesSince == null) {

var list = [];

for (var title in talks)

list.push(talks[title]);

sendTalks(list , response);

} else {

var since = Number(query.changesSince);

if (isNaN(since)) {

respond(response , 400, "Invalid parameter ");

} else {

var changed = getChangedTalks(since);

if (changed.length > 0)

sendTalks(changed , response);

else

waitForChanges(since , response);

}

}

});

When the changesSince parameter is missing, the handler simply builds up a list
of all talks and returns that.

Otherwise, the changesSince parameter first has to be checked to make sure
that it is a valid number. The getChangedTalks function, to be defined shortly,
returns an array of changed talks since a given point in time. If it returns an
empty array, the server does not yet have anything to send back to the client,

368

so it stores the response object (using waitForChanges) to be responded to at a
later time.

var waiting = [];

function waitForChanges(since , response) {

var waiter = {since: since , response: response };

waiting.push(waiter);

setTimeout(function () {

var found = waiting.indexOf(waiter);

if (found > -1) {

waiting.splice(found , 1);

sendTalks ([], response);

}

}, 90 * 1000);

}

The splice method is used to cut a piece out of an array. You give it an
index and a number of elements, and it mutates the array, removing that many
elements after the given index. In this case, we remove a single element, the
object that tracks the waiting response, whose index we found by calling indexOf

. If you pass additional arguments to splice, their values will be inserted into
the array at the given position, replacing the removed elements.

When a response object is stored in the waiting array, a timeout is immedi-
ately set. After 90 seconds, this timeout sees whether the request is still waiting
and, if it is, sends an empty response and removes it from the waiting array.

To be able to find exactly those talks that have been changed since a given
point in time, we need to keep track of the history of changes. Registering a
change with registerChange will remember that change, along with the current
time, in an array called changes. When a change occurs, that means there is
new data, so all waiting requests can be responded to immediately.

var changes = [];

function registerChange(title) {

changes.push({title: title , time: Date.now()});

waiting.forEach(function(waiter) {

sendTalks(getChangedTalks(waiter.since), waiter.response);

});

waiting = [];

}

Finally, getChangedTalks uses the changes array to build up an array of changed
talks, including objects with a deleted property for talks that no longer exist.

369

When building that array, getChangedTalks has to ensure that it doesn’t include
the same talk twice since there might have been multiple changes to a talk
since the given time.

function getChangedTalks(since) {

var found = [];

function alreadySeen(title) {

return found.some(function(f) {return f.title == title ;});

}

for (var i = changes.length - 1; i >= 0; i--) {

var change = changes[i];

if (change.time <= since)

break;

else if (alreadySeen(change.title))

continue;

else if (change.title in talks)

found.push(talks[change.title]);

else

found.push({title: change.title , deleted: true});

}

return found;

}

That concludes the server code. Running the program defined so far will get you
a server running on port 8000, which serves files from the public subdirectory
alongside a talk-managing interface under the /talks URL.

The client
The client-side part of the talk-managing website consists of three files: an
HTML page, a style sheet, and a JavaScript file.

HTML
It is a widely used convention for web servers to try to serve a file named index.

html when a request is made directly to a path that corresponds to a directory.
The file server module we use, ecstatic, supports this convention. When a
request is made to the path /, the server looks for the file ./public/index.html

(./public being the root we gave it) and returns that file if found.
Thus, if we want a page to show up when a browser is pointed at our server,

we should put it in public/index.html. This is how our index file starts:

<!doctype html >

370

<title >Skill Sharing </title >

<link rel=" stylesheet" href=" skillsharing.css">

<h1>Skill sharing </h1>

<p>Your name: <input type="text" id="name"></p>

<div id="talks"></div >

It defines the document title and includes a style sheet, which defines a few
styles to, among other things, add a border around talks. Then it adds a
heading and a name field. The user is expected to put their name in the latter
so that it can be attached to talks and comments they submit.

The <div> element with the ID "talks" will contain the current list of talks.
The script fills the list in when it receives talks from the server.

Next comes the form that is used to create a new talk.

<form id=" newtalk">

<h3 >Submit a talk </h3>

Title: <input type="text" style ="width: 40em" name="title">

Summary: <input type="text" style=" width: 40em" name=" summary">

<button type=" submit">Send </button >

</form >

The script will add a "submit" event handler to this form, from which it can
make the HTTP request that tells the server about the talk.

Next comes a rather mysterious block, which has its display style set to none,
preventing it from actually showing up on the page. Can you guess what it is
for?

<div id=" template" style=" display: none">

<div class="talk">

<h2 >{{ title}}</h2>

<div >by {{ presenter }}</div >

<p>{{ summary }}</p>

<div class=" comments"></div >

<form >

<input type="text" name=" comment">

<button type=" submit">Add comment </button >

<button type=" button" class ="del">Delete talk </button >

</form >

</div >

<div class=" comment">

371

{{ author }}: {{ message }}

</div >

</div >

Creating complicated DOM structures with JavaScript code produces ugly
code. You can make the code slightly better by introducing helper functions
like the elt function from Chapter 13, but the result will still look worse than
HTML, which can be thought of as a domain-specific language for expressing
DOM structures.

To create DOM structures for the talks, our program will define a simple
templating system, which uses hidden DOM structures included in the docu-
ment to instantiate new DOM structures, replacing the placeholders between
double braces with the values of a specific talk.

Finally, the HTML document includes the script file that contains the client-
side code.

<script src=" skillsharing_client.js"></script >

Starting up
The first thing the client has to do when the page is loaded is ask the server for
the current set of talks. Since we are going to make a lot of HTTP requests,
we will again define a small wrapper around XMLHttpRequest, which accepts an
object to configure the request as well as a callback to call when the request
finishes.

function request(options , callback) {

var req = new XMLHttpRequest ();

req.open(options.method || "GET", options.pathname , true);

req.addEventListener ("load", function () {

if (req.status < 400)

callback(null , req.responseText);

else

callback(new Error(" Request failed: " + req.statusText));

});

req.addEventListener ("error", function () {

callback(new Error(" Network error "));

});

req.send(options.body || null);

}

The initial request displays the talks it receives on the screen and starts the
long-polling process by calling waitForChanges.

372

var lastServerTime = 0;

request ({ pathname: "talks"}, function(error , response) {

if (error) {

reportError(error);

} else {

response = JSON.parse(response);

displayTalks(response.talks);

lastServerTime = response.serverTime;

waitForChanges ();

}

});

The lastServerTime variable is used to track the time of the last update that was
received from the server. After the initial request, the client’s view of the talks
corresponds to the view that the server had when it responded to that request.
Thus, the serverTime property included in the response provides an appropriate
initial value for lastServerTime.

When the request fails, we don’t want to have our page just sit there, doing
nothing without explanation. So we define a simple function called reportError,
which at least shows the user a dialog that tells them something went wrong.

function reportError(error) {

if (error)

alert(error.toString ());

}

The function checks whether there is an actual error, and it alerts only when
there is one. That way, we can also directly pass this function to request for
requests where we can ignore the response. This makes sure that if the request
fails, the error is reported to the user.

Displaying talks
To be able to update the view of the talks when changes come in, the client
must keep track of the talks that it is currently showing. That way, when a
new version of a talk that is already on the screen comes in, the talk can be
replaced (in place) with its updated form. Similarly, when information comes
in that a talk is being deleted, the right DOM element can be removed from
the document.

The function displayTalks is used both to build up the initial display and
to update it when something changes. It will use the shownTalks object, which
associates talk titles with DOM nodes, to remember the talks it currently has

373

on the screen.

var talkDiv = document.querySelector ("# talks");

var shownTalks = Object.create(null);

function displayTalks(talks) {

talks.forEach(function(talk) {

var shown = shownTalks[talk.title];

if (talk.deleted) {

if (shown) {

talkDiv.removeChild(shown);

delete shownTalks[talk.title];

}

} else {

var node = drawTalk(talk);

if (shown)

talkDiv.replaceChild(node , shown);

else

talkDiv.appendChild(node);

shownTalks[talk.title] = node;

}

});

}

Building up the DOM structure for talks is done using the templates that were
included in the HTML document. First, we must define instantiateTemplate,
which looks up and fills in a template.

The name parameter is the template’s name. To look up the template element,
we search for an element whose class name matches the template name, which is
a child of the element with ID "template". Using the querySelector method makes
this easy. There were templates named "talk" and "comment" in the HTML page.

function instantiateTemplate(name , values) {

function instantiateText(text) {

return text.replace (/\{\{(\w+)\}\}/g, function(_, name) {

return values[name];

});

}

function instantiate(node) {

if (node.nodeType == document.ELEMENT_NODE) {

var copy = node.cloneNode ();

for (var i = 0; i < node.childNodes.length; i++)

copy.appendChild(instantiate(node.childNodes[i]));

return copy;

} else if (node.nodeType == document.TEXT_NODE) {

374

return document.createTextNode(

instantiateText(node.nodeValue));

} else {

return node;

}

}

var template = document.querySelector ("# template ." + name);

return instantiate(template);

}

The cloneNode method, which all DOM nodes have, creates a copy of a node. It
won’t copy the node’s child nodes unless true is given as a first argument. The
instantiate function recursively builds up a copy of the template, filling in the
template as it goes.

The second argument to instantiateTemplate should be an object, whose prop-
erties hold the strings that are to be filled into the template. A placeholder
like {{title}} will be replaced with the value of values’ title property.

This is a crude approach to templating, but it is enough to implement drawTalk
.

function drawTalk(talk) {

var node = instantiateTemplate ("talk", talk);

var comments = node.querySelector (". comments ");

talk.comments.forEach(function(comment) {

comments.appendChild(

instantiateTemplate (" comment", comment));

});

node.querySelector (" button.del").addEventListener(

"click", deleteTalk.bind(null , talk.title));

var form = node.querySelector ("form");

form.addEventListener (" submit", function(event) {

event.preventDefault ();

addComment(talk.title , form.elements.comment.value);

form.reset();

});

return node;

}

After instantiating the "talk" template, there are various things that need to be
patched up. First, the comments have to be filled in by repeatedly instantiating
the "comment" template and appending the results to the node with class "comments
". Next, event handlers have to be attached to the button that deletes the task

375

and the form that adds a new comment.

Updating the server
The event handlers registered by drawTalk call the function deleteTalk and addComment

to perform the actual actions required to delete a talk or add a comment. These
will need to build up URLs that refer to talks with a given title, for which we
define the talkURL helper function.

function talkURL(title) {

return "talks /" + encodeURIComponent(title);

}

The deleteTalk function fires off a DELETE request and reports the error when that
fails.

function deleteTalk(title) {

request ({ pathname: talkURL(title), method: "DELETE"},

reportError);

}

Adding a comment requires building up a JSON representation of the comment
and submitting that as part of a POST request.

function addComment(title , comment) {

var comment = {author: nameField.value , message: comment };

request ({ pathname: talkURL(title) + "/ comments",

body: JSON.stringify(comment),

method: "POST"},

reportError);

}

The nameField variable used to set the comment’s author property is a reference
to the <input> field at the top of the page that allows the user to specify their
name. We also wire up that field to localStorage so that it does not have to be
filled in again every time the page is reloaded.

var nameField = document.querySelector ("# name");

nameField.value = localStorage.getItem ("name") || "";

nameField.addEventListener (" change", function () {

localStorage.setItem ("name", nameField.value);

});

The form at the bottom of the page, for proposing a new talk, gets a "submit"

376

event handler. This handler prevents the event’s default effect (which would
cause a page reload), clears the form, and fires off a PUT request to create the
talk.

var talkForm = document.querySelector ("# newtalk ");

talkForm.addEventListener (" submit", function(event) {

event.preventDefault ();

request ({ pathname: talkURL(talkForm.elements.title.value),

method: "PUT",

body: JSON.stringify ({

presenter: nameField.value ,

summary: talkForm.elements.summary.value

})}, reportError);

talkForm.reset();

});

Noticing changes
I should point out that the various functions that change the state of the
application by creating or deleting talks or adding a comment do absolutely
nothing to ensure that the changes they make are visible on the screen. They
simply tell the server and rely on the long-polling mechanism to trigger the
appropriate updates to the page.

Given the mechanism that we implemented in our server and the way we
defined displayTalks to handle updates of talks that are already on the page,
the actual long polling is surprisingly simple.

function waitForChanges () {

request ({ pathname: "talks?changesSince =" + lastServerTime},

function(error , response) {

if (error) {

setTimeout(waitForChanges , 2500);

console.error(error.stack);

} else {

response = JSON.parse(response);

displayTalks(response.talks);

lastServerTime = response.serverTime;

waitForChanges ();

}

});

}

This function is called once when the program starts up and then keeps calling

377

itself to ensure that a polling request is always active. When the request fails,
we don’t call reportError since popping up a dialog every time we fail to reach
the server would get annoying when the server is down. Instead, the error is
written to the console (to ease debugging), and another attempt is made 2.5
seconds later.

When the request succeeds, the new data is put onto the screen, and lastServerTime

is updated to reflect the fact that we received data corresponding to this new
point in time. The request is immediately restarted to wait for the next update.

If you run the server and open two browser windows for localhost:8000/ next
to each other, you can see that the actions you perform in one window are
immediately visible in the other.

Exercises
The following exercises will involve modifying the system defined in this chap-
ter. To work on them, make sure you download the code first (eloquent-
javascript.net/2nd_edition/code/skillsharing.zip) and have Node installed (nodejs.org).

Disk persistence
The skill-sharing server keeps its data purely in memory. This means that when
it crashes or is restarted for any reason, all talks and comments are lost.

Extend the server so that it stores the talk data to disk and automatically
reloads the data when it is restarted. Do not worry about efficiency—do the
simplest thing that works.

Comment field resets
The wholesale redrawing of talks works pretty well because you usually can’t
tell the difference between a DOM node and its identical replacement. But
there are exceptions. If you start typing something in the comment field for a
talk in one browser window and then, in another, add a comment to that talk,
the field in the first window will be redrawn, removing both its content and its
focus.

In a heated discussion, where multiple people are adding comments to a
single talk, this would be very annoying. Can you come up with a way to avoid
it?

378

http://localhost:8000/
http://eloquentjavascript.net/2nd_{}edition/code/skillsharing.zip
http://eloquentjavascript.net/2nd_{}edition/code/skillsharing.zip
http://nodejs.org

Better templates
Most templating systems do more than just fill in some strings. At the very
least, they also allow conditional inclusion of parts of the template, analogous
to if statements, and repetition of parts of a template, similar to a loop.

If we were able to repeat a piece of template for each element in an array,
we would not need the second template ("comment"). Rather, we could specify
the "talk" template to loop over the array held in a talk’s comments property and
render the nodes that make up a comment for every element in the array.

It could look like this:

<div class=" comments">

<div class=" comment" template -repeat =" comments">

{{ author }}: {{ message }}

</div >

</div >

The idea is that whenever a node with a template-repeat attribute is found
during template instantiation, the instantiating code loops over the array held
in the property named by that attribute. For each element in the array, it
adds an instance of the node. The template’s context (the values variable in
instantiateTemplate) would, during this loop, point at the current element of the
array so that {{author}} would be looked up in the comment object rather than
in the original context (the talk).

Rewrite instantiateTemplate to implement this and then change the templates
to use this feature and remove the explicit rendering of comments from the
drawTalk function.

How would you add conditional instantiation of nodes, making it possible to
omit parts of the template when a given value is true or false?

The unscriptables
When someone visits our website with a browser that has JavaScript disabled
or is simply not capable of displaying JavaScript, they will get a completely
broken, inoperable page. This is not nice.

Some types of web applications really can’t be done without JavaScript. For
others, you just don’t have the budget or patience to bother about clients that
can’t run scripts. But for pages with a wide audience, it is polite to support
scriptless users.

Try to think of a way the skill-sharing website could be set up to preserve
basic functionality when run without JavaScript. The automatic updates will
have to go, and people will have to refresh their page the old-fashioned way.

379

But being able to see existing talks, create new ones, and submit comments
would be nice.

Don’t feel obliged to actually implement this. Outlining a solution is enough.
Does the revised approach strike you as more or less elegant than what we did
initially?

380

Exercise Hints
The hints below might help when you are stuck with one of the exercises in
this book. They don’t give away the entire solution, but rather try to help you
find it yourself.

Program Structure
Looping a triangle
You can start with a program that simply prints out the numbers 1 to 7, which
you can derive by making a few modifications to the even number printing
example given earlier in the chapter, where the for loop was introduced.

Now consider the equivalence between numbers and strings of hash charac-
ters. You can go from 1 to 2 by adding 1 (+= 1). You can go from "\#" to
"\#\#" by adding a character (+= "\#"). Thus, your solution can closely follow
the number-printing program.

FizzBuzz
Going over the numbers is clearly a looping job, and selecting what to print is
a matter of conditional execution. Remember the trick of using the remainder
(%) operator for checking whether a number is divisible by another number (has
a remainder of zero).

In the first version, there are three possible outcomes for every number, so
you’ll have to create an if/else if/else chain.

The second version of the program has a straightforward solution and a
clever one. The simple way is to add another “branch” to precisely test the
given condition. For the clever method, build up a string containing the word
or words to output, and print either this word or the number if there is no
word, potentially by making elegant use of the || operator.

381

Chess board
The string can be built by starting with an empty one ("") and repeatedly
adding characters. A newline character is written "\n".

Use console.log to inspect the output of your program.
To work with two dimensions, you will need a loop inside of a loop. Put

curly braces around the bodies of both loops to make it easy to see where they
start and end. Try to properly indent these bodies. The order of the loops
must follow the order in which we build up the string (line by line, left to right,
top to bottom). So the outer loop handles the lines and the inner loop handles
the characters on a line.

You’ll need two variables to track your progress. To know whether to put a
space or a hash sign at a given position, you could test whether the sum of the
two counters is even (% 2).

Terminating a line by adding a newline character happens after the line has
been built up, so do this after the inner loop but inside of the outer loop.

Functions
Minimum
If you have trouble putting braces and parentheses in the right place to get a
valid function definition, start by copying one of the examples in this chapter
and modifying it.

A function may contain multiple return statements.

Recursion
Your function will likely look somewhat similar to the inner find function in the
recursive findSolution example in this chapter, with an if/else if/else chain that
tests which of the three cases applies. The final else, corresponding to the third
case, makes the recursive call. Each of the branches should contain a return

statement or in some other way arrange for a specific value to be returned.
When given a negative number, the function will recurse again and again,

passing itself an ever more negative number, thus getting further and further
away from returning a result. It will eventually run out of stack space and
abort.

382

Bean counting
A loop in your function will have to look at every character in the string by
running an index from zero to one below its length (< string.length). If the
character at the current position is the same as the one the function is looking
for, it adds 1 to a counter variable. Once the loop has finished, the counter can
be returned.

Take care to make all the variables used in the function local to the function
by using the var keyword.

Data Structures: Objects and Arrays
The sum of a range
Building up an array is most easily done by first initializing a variable to []

(a fresh, empty array) and repeatedly calling its push method to add a value.
Don’t forget to return the array at the end of the function.

Since the end boundary is inclusive, you’ll need to use the <= operator rather
than simply < to check for the end of your loop.

To check whether the optional step argument was given, either check arguments

.length or compare the value of the argument to undefined. If it wasn’t given,
simply set it to its default value (1) at the top of the function.

Having range understand negative step values is probably best done by writing
two separate loops—one for counting up and one for counting down—because
the comparison that checks whether the loop is finished needs to be >= rather
than <= when counting downward.

It might also be worthwhile to use a different default step, namely, -1, when
the end of the range is smaller than the start. That way, range(5, 2) returns
something meaningful, rather than getting stuck in an infinite loop.

Reversing an array
There are two obvious ways to implement reverseArray. The first is to simply go
over the input array from front to back and use the unshift method on the new
array to insert each element at its start. The second is to loop over the input
array backward and use the push method. Iterating over an array backward
requires a (somewhat awkward) for specification like (var i = array.length - 1;

i >= 0; i--).
Reversing the array in place is harder. You have to be careful not to overwrite

elements that you will later need. Using reverseArray or otherwise copying

383

the whole array (array.slice(0) is a good way to copy an array) works but
is cheating.

The trick is to swap the first and last elements, then the second and second-
to-last, and so on. You can do this by looping over half the length of the array
(use Math.floor to round down—you don’t need to touch the middle element in
an array with an odd length) and swapping the element at position i with the
one at position array.length - 1 - i. You can use a local variable to briefly hold
on to one of the elements, overwrite that one with its mirror image, and then
put the value from the local variable in the place where the mirror image used
to be.

A list
Building up a list is best done back to front. So arrayToList could iterate over
the array backward (see previous exercise) and, for each element, add an object
to the list. You can use a local variable to hold the part of the list that was built
so far and use a pattern like list = {value: X, rest: list} to add an element.

To run over a list (in listToArray and nth), a for loop specification like this
can be used:

for (var node = list; node; node = node.rest) {}

Can you see how that works? Every iteration of the loop, node points to the
current sublist, and the body can read its value property to get the current
element. At the end of an iteration, node moves to the next sublist. When that
is null, we have reached the end of the list and the loop is finished.

The recursive version of nth will, similarly, look at an ever smaller part of the
“tail” of the list and at the same time count down the index until it reaches
zero, at which point it can return the value property of the node it is looking
at. To get the zeroeth element of a list, you simply take the value property of
its head node. To get element N + 1, you take the Nth element of the list
that’s in this list’s rest property.

Deep comparison
Your test for whether you are dealing with a real object will look something like
typeof x == "object" && x != null. Be careful to compare properties only when
both arguments are objects. In all other cases you can just immediately return
the result of applying ===.

Use a for/in loop to go over the properties. You need to test whether both
objects have the same set of property names and whether those properties have

384

identical values. The first test can be done by counting the properties in both
objects and returning false if the numbers of properties are different. If they’re
the same, then go over the properties of one object, and for each of them, verify
that the other object also has the property. The values of the properties are
compared by a recursive call to deepEqual.

Returning the correct value from the function is best done by immediately
returning false when a mismatch is noticed and returning true at the end of
the function.

Higher-Order Functions
Mother-child age difference
Because not all elements in the ancestry array produce useful data (we can’t
compute the age difference unless we know the birth date of the mother), we
will have to apply filter in some manner before calling average. You could
do it as a first pass, by defining a hasKnownMother function and filtering on that
first. Alternatively, you could start by calling map and in your mapping function
return either the age difference or null if no mother is known. Then, you can
call filter to remove the null elements before passing the array to average.

Historical life expectancy
The essence of this example lies in grouping the elements of a collection by
some aspect of theirs—splitting the array of ancestors into smaller arrays with
the ancestors for each century.

During the grouping process, keep an object that associates century names
(numbers) with arrays of either person objects or ages. Since we do not know
in advance what categories we will find, we’ll have to create them on the fly.
For each person, after computing their century, we test whether that century
was already known. If not, add an array for it. Then add the person (or age)
to the array for the proper century.

Finally, a for/in loop can be used to print the average ages for the individual
centuries.

Every and then some
The functions can follow a similar pattern to the definition of forEach at the
start of the chapter, except that they must return immediately (with the right
value) when the predicate function returns false—or true. Don’t forget to put

385

another return statement after the loop so that the function also returns the
correct value when it reaches the end of the array.

The Secret Life of Objects
A vector type
Your solution can follow the pattern of the Rabbit constructor from this chapter
quite closely.

Adding a getter property to the constructor can be done with the Object.

defineProperty function. To compute the distance from (0, 0) to (x, y), you can
use the Pythagorean theorem, which says that the square of the distance we
are looking for is equal to the square of the x-coordinate plus the square of the
y-coordinate. Thus,

√
x2 + y2 is the number you want, and Math.sqrt is the way

you compute a square root in JavaScript.

Another cell
You’ll have to store all three constructor arguments in the instance object.
The minWidth and minHeight methods should call through to the corresponding
methods in the inner cell but ensure that no number less than the given size is
returned (possibly using Math.max).

Don’t forget to add a draw method that simply forwards the call to the inner
cell.

Sequence interface
One way to solve this is to give the sequence objects state, meaning their
properties are changed in the process of using them. You could store a counter
that indicates how far the sequence object has advanced.

Your interface will need to expose at least a way to get the next element and
to find out whether the iteration has reached the end of the sequence yet. It
is tempting to roll these into one method, next, which returns null or undefined

when the sequence is at its end. But now you have a problem when a sequence
actually contains null. So a separate method (or getter property) to find out
whether the end has been reached is probably preferable.

Another solution is to avoid changing state in the object. You can expose a
method for getting the current element (without advancing any counter) and
another for getting a new sequence that represents the remaining elements after

386

the current one (or a special value if the end of the sequence is reached). This
is quite elegant—a sequence value will “stay itself” even after it is used and can
thus be shared with other code without worrying about what might happen to
it. It is, unfortunately, also somewhat inefficient in a language like JavaScript
because it involves creating a lot of objects during iteration.

Project: Electronic Life
Artificial stupidity
The greediness problem can be attacked in several ways. The critters could
stop eating when they reach a certain energy level. Or they could eat only
every N turns (by keeping a counter of the turns since their last meal in a
property on the creature object). Or, to make sure plants never go entirely
extinct, the animals could refuse to eat a plant unless they see at least one
other plant nearby (using the findAll method on the view). A combination of
these, or some entirely different strategy, might also work.

Making the critters move more effectively could be done by stealing one of
the movement strategies from the critters in our old, energyless world. Both
the bouncing behavior and the wall-following behavior showed a much wider
range of movement than completely random staggering.

Making creatures breed more slowly is trivial. Just increase the minimum
energy level at which they reproduce. Of course, making the ecosystem more
stable also makes it more boring. If you have a handful of fat, immobile critters
forever munching on a sea of plants and never reproducing, that makes for a
very stable ecosystem. But no one wants to watch that.

Predators
Many of the same tricks that worked for the previous exercise also apply here.
Making the predators big (lots of energy) and having them reproduce slowly
is recommended. That’ll make them less vulnerable to periods of starvation
when the herbivores are scarce.

Beyond staying alive, keeping its food stock alive is a predator’s main ob-
jective. Find some way to make predators hunt more aggressively when there
are a lot of herbivores and hunt more slowly (or not at all) when prey is rare.
Since plant eaters move around, the simple trick of eating one only when others
are nearby is unlikely to work—that’ll happen so rarely that your predator will
starve. But you could keep track of observations in previous turns, in some

387

data structure kept on the predator objects, and have it base its behavior on
what it has seen recently.

Bugs and Error Handling
Retry
The call to primitiveMultiply should obviously happen in a try block. The cor-
responding catch block should rethrow the exception when it is not an instance
of MultiplicatorUnitFailure and ensure the call is retried when it is.

To do the retrying, you can either use a loop that breaks only when a call
succeeds—as in the look example earlier in this chapter—or use recursion and
hope you don’t get a string of failures so long that it overflows the stack (which
is a pretty safe bet).

The locked box
This exercise calls for a finally block, as you probably guessed. Your function
should first unlock the box and then call the argument function from inside a
try body. The finally block after it should lock the box again.

To make sure we don’t lock the box when it wasn’t already locked, check its
lock at the start of the function and unlock and lock it only when it started
out locked.

Regular Expressions
Quoting style
The most obvious solution is to only replace quotes with a nonword character
on at least one side. Something like /\W'|'\W/. But you also have to take the
start and end of the line into account.

In addition, you must ensure that the replacement also includes the charac-
ters that were matched by the \W pattern so that those are not dropped. This
can be done by wrapping them in parentheses and including their groups in
the replacement string ($1, $2). Groups that are not matched will be replaced
by nothing.

388

Numbers again
First, do not forget the backslash in front of the dot.

Matching the optional sign in front of the number, as well as in front of the
exponent, can be done with [+\-]? or (\+|-|) (plus, minus, or nothing).

The more complicated part of the exercise is the problem of matching both
"5." and ".5" without also matching ".". For this, a good solution is to use
the | operator to separate the two cases—either one or more digits optionally
followed by a dot and zero or more digits or a dot followed by one or more
digits.

Finally, to make the e case-insensitive, either add an i option to the regular
expression or use [eE].

Modules
Month names
This follows the weekDay module almost exactly. A function expression, called
immediately, wraps the variable that holds the array of names, along with the
two functions that must be exported. The functions are put in an object and
returned. The returned interface object is stored in the month variable.

A return to electronic life
Here is what I came up with. I’ve put parentheses around internal functions.

Module "grid"

Vector

Grid

directions

directionNames

Module "world"

(randomElement)

(elementFromChar)

(charFromElement)

View

World

LifelikeWorld

directions [reexported]

Module "simple_ecosystem"

(randomElement) [duplicated]

389

(dirPlus)

Wall

BouncingCritter

WallFollower

Module "ecosystem"

Wall [duplicated]

Plant

PlantEater

SmartPlantEater

Tiger

I have reexported the directions array from the grid module from world so that
modules built on that (the ecosystems) don’t have to know or worry about the
existence of the grid module.

I also duplicated two generic and tiny helper values (randomElement and Wall)
since they are used as internal details in different contexts and do not belong
in the interfaces for these modules.

Circular dependencies
The trick is to add the exports object created for a module to require’s cache
before actually running the module. This means the module will not yet have
had a chance to override module.exports, so we do not know whether it may want
to export some other value. After loading, the cache object is overridden with
module.exports, which may be a different value.

But if in the course of loading the module, a second module is loaded that
asks for the first module, its default exports object, which is likely still empty at
this point, will be in the cache, and the second module will receive a reference
to it. If it doesn’t try to do anything with the object until the first module has
finished loading, things will work.

Project: A Programming Language
Arrays
The easiest way to do this is to represent Egg arrays with JavaScript arrays.

The values added to the top environment must be functions. Array.prototype

.slice can be used to convert an arguments array-like object into a regular array.

390

Closure
Again, we are riding along on a JavaScript mechanism to get the equivalent
feature in Egg. Special forms are passed the local environment in which they
are evaluated so that they can evaluate their subforms in that environment.
The function returned by fun closes over the env argument given to its enclosing
function and uses that to create the function’s local environment when it is
called.

This means that the prototype of the local environment will be the envi-
ronment in which the function was created, which makes it possible to access
variables in that environment from the function. This is all there is to imple-
menting closure (though to compile it in a way that is actually efficient, you’d
need to do some more work).

Comments
Make sure your solution handles multiple comments in a row, with potentially
whitespace between or after them.

A regular expression is probably the easiest way to solve this. Write some-
thing that matches “whitespace or a comment, zero or more times”. Use the
exec or match method and look at the length of the first element in the returned
array (the whole match) to find out how many characters to slice off.

Fixing scope
You will have to loop through one scope at a time, using Object.getPrototypeOf to
go the next outer scope. For each scope, use hasOwnProperty to find out whether
the variable, indicated by the name property of the first argument to set, exists
in that scope. If it does, set it to the result of evaluating the second argument
to set and then return that value.

If the outermost scope is reached (Object.getPrototypeOf returns null) and we
haven’t found the variable yet, it doesn’t exist, and an error should be thrown.

The Document Object Model
Build a table
Use document.createElement to create new element nodes, document.createTextNode

to create text nodes, and the appendChild method to put nodes into other nodes.

391

You should loop over the key names once to fill in the top row and then
again for each object in the array to construct the data rows.

Don’t forget to return the enclosing <table> element at the end of the function.

Elements by tag name
The solution is most easily expressed with a recursive function, similar to the
talksAbout function defined earlier in this chapter.

You could call byTagname itself recursively, concatenating the resulting arrays
to produce the output. For a more efficient approach, define an inner function
that calls itself recursively and that has access to an array variable defined in
the outer function to which it can add the matching elements it finds. Don’t
forget to call the inner function once from the outer function.

The recursive function must check the node type. Here we are interested only
in node type 1 (document.ELEMENT_NODE). For such nodes, we must loop over their
children and, for each child, see whether the child matches the query while also
doing a recursive call on it to inspect its own children.

Handling Events
Censored keyboard
The solution to this exercise involves preventing the default behavior of key
events. You can handle either "keypress" or "keydown". If either of them has
preventDefault called on it, the letter will not appear.

Identifying the letter typed requires looking at the keyCode or charCode property
and comparing that with the codes for the letters you want to filter. In "keydown

", you do not have to worry about lowercase and uppercase letters, since it
identifies only the key pressed. If you decide to handle "keypress" instead,
which identifies the actual character typed, you have to make sure you test for
both cases. One way to do that would be this:

/[qwx]/i.test(String.fromCharCode(event.charCode))

Mouse trail
Creating the elements is best done in a loop. Append them to the document to
make them show up. To be able to access them later to change their position,
store the trail elements in an array.

392

Cycling through them can be done by keeping a counter variable and adding
1 to it every time the "mousemove" event fires. The remainder operator (% 10)
can then be used to get a valid array index to pick the element you want to
position during a given event.

Another interesting effect can be achieved by modeling a simple physics sys-
tem. Use the "mousemove" event only to update a pair of variables that track the
mouse position. Then use requestAnimationFrame to simulate the trailing elements
being attracted to the position of the mouse pointer. At every animation step,
update their position based on their position relative to the pointer (and, op-
tionally, a speed that is stored for each element). Figuring out a good way to
do this is up to you.

Tabs
One pitfall you’ll probably run into is that you can’t directly use the node’s
childNodes property as a collection of tab nodes. For one thing, when you add
the buttons, they will also become child nodes and end up in this object because
it is live. For another, the text nodes created for the whitespace between the
nodes are also in there and should not get their own tabs.

To work around this, start by building up a real array of all the children in
the wrapper that have a nodeType of 1.

When registering event handlers on the buttons, the handler functions will
need to know which tab element is associated with the button. If they are
created in a normal loop, you can access the loop index variable from inside
the function, but it won’t give you the correct number because that variable
will have been further changed by the loop.

A simple workaround is to use the forEach method and create the handler
functions from inside the function passed to forEach. The loop index, which is
passed as a second argument to that function, will be a normal local variable
there and won’t be overwritten by further iterations.

Project: A Platform Game
Game over
The most obvious solution would be to make lives a variable that lives in runGame

and is thus visible to the startLevel closure.
Another approach, which fits nicely with the spirit of the rest of the function,

would be to add a second parameter to startLevel that gives the number of lives.

393

When the whole state of a system is stored in the arguments to a function,
calling that function provides an elegant way to transition to a new state.

In any case, when a level is lost, there should now be two possible state
transitions. If that was the last life, we go back to level zero with the starting
amount of lives. If not, we repeat the current level with one less life remaining.

Pausing the game
An animation can be interrupted by returning false from the function given to
runAnimation. It can be continued by calling runAnimation again.

To communicate that the animation should be interrupted to the function
passed to runAnimation so that it can return false, you can use a variable that
both the event handler and that function have access to.

When finding a way to unregister the handlers registered by trackKeys, re-
member that the exact same function value that was passed to addEventListener

must be passed to removeEventListener to successfully remove a handler. Thus,
the handler function value created in trackKeys must be available to the code
that unregisters the handlers.

You can add a property to the object returned by trackKeys, containing either
that function value or a method that handles the unregistering directly.

Drawing on Canvas
Shapes
The trapezoid (1) is easy to draw using a path. Pick suitable center coordinates
and add each of the four corners around that.

The diamond (2) can be drawn the easy way, with a path, or the interesting
way, with a rotate transformation. To use rotation, you will have to apply a
trick similar to what we did in the flipHorizontally function. Because you want
to rotate around the center of your rectangle and not around the point (0,0),
you must first translate to there, then rotate, and then translate back.

For the zigzag (3) it becomes impractical to write a new call to lineTo for
each line segment. Instead, you should use a loop. You can have each iteration
draw either two line segments (right and then left again) or one, in which case
you must use the evenness (% 2) of the loop index to determine whether to go
left or right.

You’ll also need a loop for the spiral (4). If you draw a series of points, with
each point moving further along a circle around the spiral’s center, you get a

394

circle. If, during the loop, you vary the radius of the circle on which you are
putting the current point and go around more than once, the result is a spiral.

The star (5) depicted is built out of quadraticCurveTo lines. You could also
draw one with straight lines. Divide a circle into eight pieces, or a piece for
each point you want your star to have. Draw lines between these points, making
them curve toward the center of the star. With quadraticCurveTo, you can use
the center as the control point.

The pie chart
You will need to call fillText and set the context’s textAlign and textBaseline

properties in such a way that the text ends up where you want it.
A sensible way to position the labels would be to put the text on the line

going from the center of the pie through the middle of the slice. You don’t
want to put the text directly against the side of the pie but rather move the
text out to the side of the pie by a given number of pixels.

The angle of this line is currentAngle + 0.5 * sliceAngle. The following code
finds a position on this line, 120 pixels from the center:

var middleAngle = currentAngle + 0.5 * sliceAngle;

var textX = Math.cos(middleAngle) * 120 + centerX;

var textY = Math.sin(middleAngle) * 120 + centerY;

For textBaseline, the value "middle" is probably appropriate when using this
approach. What to use for textAlign depends on the side of the circle we are
on. On the left, it should be "right", and on the right, it should be "left" so
that the text is positioned away from the pie.

If you are not sure how to find out which side of the circle a given angle is
on, look to the explanation of Math.cos in the previous exercise. The cosine of
an angle tells us which x-coordinate it corresponds to, which in turn tells us
exactly which side of the circle we are on.

A bouncing ball
A box is easy to draw with strokeRect. Define a variable that holds its size or
define two variables if your box’s width and height differ. To create a round
ball, start a path, call arc(x, y, radius, 0, 7), which creates an arc going from
zero to more than a whole circle, and fill it.

To model the ball’s position and speed, you can use the Vector type from
Chapter 15(!interactive (which is available on this page)!). Give it a starting
speed, preferably one that is not purely vertical or horizontal, and every frame,

395

multiply that speed with the amount of time that elapsed. When the ball gets
too close to a vertical wall, invert the x component in its speed. Likewise,
invert the y component when it hits a horizontal wall.

After finding the ball’s new position and speed, use clearRect to delete the
scene and redraw it using the new position.

Precomputed mirroring
The key to the solution is the fact that we can use a canvas element as a source
image when using drawImage. It is possible to create an extra <canvas> element,
without adding it to the document, and draw our inverted sprites to it, once.
When drawing an actual frame, we just copy the already inverted sprites to
the main canvas.

Some care would be required because images do not load instantly. We do
the inverted drawing only once, and if we do it before the image loads, it
won’t draw anything. A "load" handler on the image can be used to draw the
inverted images to the extra canvas. This canvas can be used as a drawing
source immediately (it’ll simply be blank until we draw the character onto it).

HTTP
Content negotiation
See the various examples of using an XMLHttpRequest in this chapter for an exam-
ple of the method calls involved in making a request. You can use a synchronous
request (by setting the third parameter to open to false) if you want.

Asking for a bogus media type will return a response with code 406, “Not
acceptable”, which is the code a server should return when it can’t fulfill the
Accept header.

Waiting for multiple promises
The function passed to the Promise constructor will have to call then on each of
the promises in the given array. When one of them succeeds, two things need
to happen. The resulting value needs to be stored in the correct position of a
result array, and we must check whether this was the last pending promise and
finish our own promise if it was.

The latter can be done with a counter, which is initialized to the length of
the input array and from which we subtract 1 every time a promise succeeds.

396

When it reaches 0, we are done. Make sure you take the situation where the
input array is empty (and thus no promise will ever resolve) into account.

Handling failure requires some thought but turns out to be extremely simple.
Just pass the failure function of the wrapping promise to each of the promises
in the array so that a failure in one of them triggers the failure of the whole
wrapper.

Forms and Form Fields
A JavaScript workbench
Use document.querySelector or document.getElementById to get access to the elements
defined in your HTML. An event handler for "click" or "mousedown" events on
the button can get the value property of the text field and call new Function on
it.

Make sure you wrap both the call to new Function and the call to its result in
a try block so that you can catch exceptions that it produces. In this case, we
really don’t know what type of exception we are looking for, so catch everything.

The textContent property of the output element can be used to fill it with a
string message. Or, if you want to keep the old content around, create a new
text node using document.createTextNode and append it to the element. Remember
to add a newline character to the end so that not all output appears on a single
line.

Autocompletion
The best event for updating the suggestion list is "input" since that will fire
immediately when the content of the field is changed.

Then loop over the array of terms and see whether they start with the given
string. For example, you could call indexOf and see whether the result is zero.
For each matching string, add an element to the suggestions <div>. You should
probably also empty that each time you start updating the suggestions, for
example by setting its textContent to the empty string.

You could either add a "click" event handler to every suggestion element
or add a single one to the outer <div> that holds them and look at the target

property of the event to find out which suggestion was clicked.
To get the suggestion text out of a DOM node, you could look at its textContent

or set an attribute to explicitly store the text when you create the element.

397

Conway’s Game of Life
To solve the problem of having the changes conceptually happen at the same
time, try to see the computation of a generation as a pure function, which takes
one grid and produces a new grid that represents the next turn.

Representing the grid can be done in any of the ways shown in Chapters 7
and 15. Counting live neighbors can be done with two nested loops, looping
over adjacent coordinates. Take care not to count cells outside of the field and
to ignore the cell in the center, whose neighbors we are counting.

Making changes to checkboxes take effect on the next generation can be
done in two ways. An event handler could notice these changes and update the
current grid to reflect them, or you could generate a fresh grid from the values
in the checkboxes before computing the next turn.

If you choose to go with event handlers, you might want to attach attributes
that identify the position that each checkbox corresponds to so that it is easy
to find out which cell to change.

To draw the grid of checkboxes, you either can use a <table> element (see
Chapter 13) or simply put them all in the same element and put
 (line
break) elements between the rows.

Project: A Paint Program
Rectangles
You can use relativePos to find the corner corresponding to the start of the
mouse drag. Figuring out where the drag ends can be done with trackDrag or
by registering your own event handler.

When you have two corners of the rectangle, you must somehow translate
these into the arguments that fillRect expects: the top-left corner, width, and
height of the rectangle. Math.min can be used to find the leftmost x-coordinate
and topmost y-coordinate. To get the width or height, you can call Math.abs

(the absolute value) on the difference between two sides.
Showing the rectangle during the mouse drag requires a similar set of num-

bers but in the context of the whole page rather than relative to the canvas.
Consider writing a function findRect, which converts two points into an object
with top, left, width, and height properties so that you don’t have to write the
same logic twice.

You can then create a <div> node and set its style.position to absolute. When
setting positioning styles, do not forget to append "px" to the numbers. The
node must be added to the document (you can append it to document.body) and

398

also removed again when the drag ends and the actual rectangle gets drawn
onto the canvas.

Color picker
You’ll again need to use relativePos to find out which pixel was clicked. The
pixelAt function in the example demonstrates how to get the values for a given
pixel. Putting those into an rgb string merely requires some string concatena-
tion.

Make sure you verify that the exception you catch is an instance of SecurityError
so that you don’t accidentally handle the wrong kind of exception.

Flood fill
Given a pair of starting coordinates and the image data for the whole canvas,
this approach should work:

1. Create an array to hold information about already colored coordinates.

2. Create a work list array to hold coordinates that must be looked at. Put
the start position in it.

3. When the work list is empty, we are done.

4. Remove one pair of coordinates from the work list.

5. If those coordinates are already in our array of colored pixels, go back to
step 3.

6. Color the pixel at the current coordinates and add the coordinates to the
array of colored pixels.

7. Add the coordinates of each adjacent pixel whose color is the same as the
starting pixel’s original color to the work list.

8. Return to step 3.

The work list can simply be an array of vector objects. The data structure
that tracks colored pixels will be consulted very often. Searching through the
whole thing every time a new pixel is visited will take a lot of time. You could
instead create an array that has a value in it for every pixel, using again the
x + y × width scheme for associating positions with pixels. When checking

399

whether a pixel has been colored already, you could directly access the field
corresponding to the current pixel.

You can compare colors by running over the relevant part of the data array,
comparing one field at a time. Or you can “condense” a color to a single
number or string and compare those. When doing this, ensure that every color
produces a unique value. For example, simply adding the color’s components
is not safe since multiple colors will have the same sum.

When enumerating the neighbors of a given point, take care to exclude neigh-
bors that are not inside of the canvas or your program might run off into one
direction forever.

Node.js
Content negotiation, again
Don’t forget to call the end method on the object returned by http.request in
order to actually fire off the request.

The response object passed to http.request’s callback is a readable stream.
This means that it is not entirely trivial to get the whole response body from it.
The following utility function reads a whole stream and calls a callback function
with the result, using the usual pattern of passing any errors it encounters as
the first argument to the callback:

function readStreamAsString(stream , callback) {

var data = "";

stream.on("data", function(chunk) {

data += chunk.toString ();

});

stream.on("end", function () {

callback(null , data);

});

stream.on("error", function(error) {

callback(error);

});

}

Fixing a leak
It is enough to strip out all occurrences of two dots that have a slash, a back-
slash, or the end of the string on both sides. Using the replace method with a
regular expression is the easiest way to do this. But since such instances may

400

overlap (as in "/../../f"), you may have to apply replace multiple times, until
the string no longer changes. Also make sure you do the replace after decoding
the string, or it would be possible to foil the check by encoding a dot or a slash.

Another potentially worrying case is when paths start with a slash, which
are interpreted as absolute paths. But because urlToPath puts a dot character
in front of the path, it is impossible to create requests that result in such a
path. Multiple slashes in a row, inside the path, are odd but will be treated as
a single slash by the file system.

Creating directories
You can use the function that implements the DELETE method as a blueprint for
the MKCOL method. When no file is found, try to create a directory with fs.mkdir.
When a directory exists at that path, you can return a 204 response so that
directory creation requests are idempotent. If a nondirectory file exists here,
return an error code. The code 400 (“bad request”) would be appropriate here.

A public space on the web
You can create a <textarea> element to hold the content of the file that is
being edited. A GET request, using XMLHttpRequest, can be used to get the cur-
rent content of the file. You can use relative URLs like index.html, instead
of http://localhost:8000/index.html, to refer to files on the same server as the
running script.

Then, when the user clicks a button (you can use a <form> element and "submit

" event or simply a "click" handler), make a PUT request to the same URL, with
the content of the <textarea> as request body, to save the file.

You can then add a <select> element that contains all the files in the server’s
root directory by adding <option> elements containing the lines returned by a
GET request to the URL /. When the user selects another file (a "change" event
on the field), the script must fetch and display that file. Also make sure that
when saving a file, you use the currently selected filename.

Unfortunately, the server is too simplistic to be able to reliably read files
from subdirectories since it does not tell us whether the thing we fetched with
a GET request is a regular file or a directory. Can you think of a way to extend
the server to address this?

401

http://localhost:8000/index.html

Project: Skill-Sharing Website
Disk persistence
The simplest solution I can come up with is to encode the whole talks object
as JSON and dump it to a file with fs.writeFile. There is already a function
(registerChange) that is called every time the server’s data changes. It can be
extended to write the new data to disk.

Pick a filename, for example ./talks.json. When the server starts, it can try
to read that file with fs.readFile, and if that succeeds, the server can use the
file’s contents as its starting data.

Beware, though. The talks object started as a prototype-less object so that
the in operator could be sanely used. JSON.parse will return regular objects with
Object.prototype as their prototype. If you use JSON as your file format, you’ll
have to copy the properties of the object returned by JSON.parse into a new,
prototype-less object.

Comment field resets
The ad hoc approach is to simply store the state of a talk’s comment field (its
content and whether it is focused) before redrawing the talk and then reset the
field to its old state afterward.

Another solution would be to not simply replace the old DOM structure with
the new one but recursively compare them, node by node, and update only the
parts that actually changed. This is a lot harder to implement, but it’s more
general and continues working even if we add another text field.

Better templates
You could change instantiateTemplate so that its inner function takes not just
a node but also a current context as an argument. You can then, when loop-
ing over a node’s child nodes, check whether the child has a template-repeat

attribute. If it does, don’t instantiate it once but instead loop over the array
indicated by the attribute’s value and instantiate it once for every element in
the array, passing the current array element as context.

Conditionals can be implemented in a similar way, with attributes called, for
example, template-when and template-unless, which cause a node to be instantiated
only when a given property is true (or false).

402

The unscriptables
Two central aspects of the approach taken in this chapter—a clean HTTP
interface and client-side template rendering—don’t work without JavaScript.
Normal HTML forms can send GET and POST requests but not PUT or DELETE

requests and can send their data only to a fixed URL.
Thus, the server would have to be revised to accept comments, new talks,

and deleted talks through POST requests, whose bodies aren’t JSON but rather
use the URL-encoded format that HTML forms use (see Chapter 17). These
requests would have to return the full new page so that users see the new state
of the site after they make a change. This would not be too hard to engineer
and could be implemented alongside the “clean” HTTP interface.

The code for rendering talks would have to be duplicated on the server.
The index.html file, rather than being a static file, would have to be generated
dynamically by adding a handler for it to the router. That way, it already
includes the current talks and comments when it gets served.

403

Index

* operator, 12, 18, 150
*= operator, 32
+ operator, 12, 14, 18, 88, 150
++ operator, 33
+= operator, 32
- operator, 13, 15, 18
– operator, 33
-= operator, 32
/ operator, 13
/= operator, 32
<= operator, 16
= operator, 22, 60, 163, 165, 191
== operator, 16, 18, 62, 76
=== operator, 19, 76, 384
?: operator, 17, 20
[] (array), 56
[] (subscript), 57
% operator, 13, 32, 278, 381, 382,

392, 394
&& operator, 16, 19, 94
|| operator, 16, 19, 48, 94, 119, 320,

381
> operator, 15
>= operator, 16
< operator, 15
{} (block), 29, 41, 82
{} (object), 59, 110
200 (HTTP status code), 293, 345
204 (HTTP status code), 352
2d (canvas context), 268
400 (HTTP status code), 401

404 (HTTP status code), 293, 350,
365, 367

405 (HTTP status code), 349
406 (HTTP status code), 396
500 (HTTP status code), 351, 354

a (HTML tag), 201, 216, 218, 310
Abelson, Hal, 184
absolute path, 401
absolute positioning, 222, 226, 233,

237, 243
abstract syntax tree, see syntax tree
abstraction, 5, 38, 78, 79, 82, 88, 89,

91, 117, 184, 199, 209, 299,
304

acceleration, 261
Accept header, 306, 355, 396
access control, 124, 146, 172, 362
Access-Control-Allow-Origin header,

299
actionTypes object, 127
activeElement property, 310
actor, 248, 249, 254, 259, 260, 284
actorAt method, 259
addEntry function, 63
addEventListener method, 227, 228,

263, 347
addition, 12, 114
address, 292
address bar, 200, 292, 294
adoption, 147
age difference (exercise), 93, 385

404

alert function, 24, 44, 202
algorithm, 399
alignment, 111
all function, 306, 396
alpha, 336
alphanumeric character, 149
alt attribute, 212
alt key, 232
altKey property, 232
ambiguity, 196
AMD, 177, 180
American English, 150
ampersand character, 201, 294
analysis, 134, 138
ancestor element, 255
ancestry example, 84–87, 89, 91, 93
ANCESTRY_FILE data set, 85
angle, 224, 274, 275, 334, 395
angle brackets, 201
animate method, 259
animation, 125, 131, 222, 223, 226,

236, 243, 247, 249, 250, 257,
259, 261, 262, 264, 278, 283,
286, 288, 291, 394, 395

anonymous function, 172
appendChild method, 212, 253, 391
Apple, 204
application (of functions), see func-

tion application
apply method, 83, 97
approximation, 115
arc, 273–275
arc method, 274, 395
arcTo method, 273, 274
area, 334
argument, 25, 44, 48, 158, 184
arguments object, 71, 83, 383

indexing, 72
argv property, 341
arithmetic, 12, 18, 192

Armstrong, Joe, 95
array, 58, 59, 61, 66, 75, 79, 81, 84,

93, 115, 116, 145, 151, 195,
248, 385

as grid, 116, 336
as table, 64
creation, 56, 88, 117, 383
filtering, 85
indexing, 57, 66, 69, 80, 106, 116,

119, 369, 383, 392
length of, 58, 117
methods, 69, 71, 75, 81, 85, 86,

94, 369
searching, 66, 69
traversal, 80

Array constructor, 117
Array prototype, 98, 101
array-like object, 71, 83, 181, 192,

209, 210, 221, 311, 314, 317,
344

arrow function, 121
artificial intelligence, 115, 126, 132,

195, 387
artificial life, 115, 246, 321
artificial stupidity (exercise), 132, 387
ASCII art, 342
assert function, 145
assertion, 145
assignment, 22, 32, 163, 165, 196,

391
assumption, 143, 145
asterisk, 12, 150
asynchronous I/O, 177, 297, 338, 339
asynchronous programming, 177, 179,

180, 265, 297, 300, 301, 304,
311, 317, 338–340, 343, 347,
350

attack, 299
attribute, 201, 214, 324, 397, 398
authorization, 362

405

autocompletion (exercise), 321, 397
autofocus attribute, 310
automatic semicolon insertion, 22
avatar, 246
average function, 88, 93, 385
axis, 260, 269, 279, 280

Babbage, Charles, 55
background, 246, 253, 257, 258, 284
background (CSS), 243, 246, 253
backgroundReadFile function, 178,

299
backslash character, 14, 147, 149, 161,

201, 356, 389, 400
backtracking, 156, 160
backward compatibility, 171
ball, 291, 395
Banks, Ian, 245
bean counting (exercise), 54, 383
beforeunload event, 239
behavior, 118, 125, 167, 195, 387,

388
benchmark, 217
Berners-Lee, Tim, 292
best practices, 3
bezierCurveTo method, 272
binary data, 3, 10, 344
binary number, 10, 11, 64, 137, 156,

316
binary operator, 12, 15, 21
bind method, 92, 97, 121
bit, 4, 10, 11, 15, 64
bitmap graphics, 277, 291
Blob type, 318
block, 29, 31, 38, 141, 185
block comment, 35, 160
block element, 216, 218, 219
blocking, 177, 223, 239, 241, 297,

339, 345
blur event, 238

blur method, 310
body (HTML tag), 201, 202, 207
body (HTTP), 293, 295, 296, 346,

352, 366
body property, 207, 208, 211
bold, 218
book analogy, 169, 183
Book of Programming, 10, 338
Boolean, 15, 27, 29, 62, 148, 190, 191

conversion to, 19, 27, 30
Boolean function, 27
border (CSS), 217, 219
border-radius (CSS), 233
bouncing, 118, 247, 250, 257, 260,

291
BouncingCritter type, 118
boundary, 153, 155, 161, 165, 167,

284, 388
box, 146, 206, 246, 291, 395
box shadow (CSS), 255
br (HTML tag), 398
braces, see curly braces
branching, 154, 156
branching recursion, 48, 281
break keyword, 32, 33
breakpoint, 138
British English, 150
browser, 2, 6, 24–26, 74, 174, 177,

198, 200, 202–204, 228, 246,
247, 291, 292, 294–297, 299,
304, 305, 312, 318, 320, 328,
331, 355, 359, 379

browser wars, 204
Browserify, 177
browsers, 8
brush, 324, 328, 329, 333
bubbling, see event propagation
bucket fill, 336, 399
budget, 379
Buffer type, 344, 347, 348

406

bug, 78, 134, 137, 160, 162, 167, 170,
171, 204, 356

business software, 295
button, 227, 294, 311, 322, 332
button (HTML tag), 203, 228, 233,

244, 312, 319, 321
buttons property, 235
byName object, 89, 93

cache, 176, 178, 390
call method, 97, 101, 111, 122, 127,

192
call stack, 43–45, 49, 140–142, 144
callback function, 227, 264, 297, 299–

301, 338, 339, 343, 344, 346,
347, 353, 373, 400

calling (of functions), see function
application

camel case, 34, 220
cancelAnimationFrame function, 241
canvas, 247, 267, 269–274, 276–283,

287–290, 325, 330, 331, 335,
396

context, 268, 269, 332
path, 270
size, 268, 270

canvas (HTML tag), 268, 324
canvas property, 325
CanvasDisplay type, 283, 284, 286
capitalization, 34, 99, 151, 220, 225,

295, 297, 347, 392
capture group, 151–153, 158, 364
career, 245
caret character, 149, 153, 165
carnivore, 132
carriage return, 164
cascading, 220
Cascading Style Sheets, see CSS
case conversion, 58
case keyword, 33

case sensitivity, 151, 297, 389
casual computing, 1
cat’s hat (exercise), 226
catch keyword, 140, 141, 143, 146,

388
catch method, 304
CD, 10
celery, 358
cell, 321
censored keyboard (exercise), 243, 392
center, 256
centering, 223
century, 93, 385
certificate, 305
chaining, 302, 303, 354
change event, 309, 313, 320, 324, 329,

332, 398, 401
chapter, 169
character, 14, 232, 313
character category, 166
character encoding, 344
charAt method, 54, 71
charCode property, 232, 392
charCodeAt method, 232
chat, 198
checkbox, 308, 314, 322, 398
checked attribute, 308, 314
chess board (exercise), 37, 382
child node, 208, 210, 211, 235
childNodes property, 210, 213, 393
choice, 154
Chrome, 204
circle, 223, 273, 274, 334
circle (SVG tag), 268
circular dependency, 183, 390
circus, 69
class attribute, 211, 216, 220, 252,

254, 255, 325, 374
className property, 216
cleaning up, 141, 256

407

clearing, 215, 267, 278, 284, 396
clearInterval function, 241
clearRect method, 278, 396
clearTimeout function, 240, 241
cleverness, 180
click event, 227–229, 233, 397, 401
client, 199, 304, 346, 359, 370
clientHeight property, 217
clientWidth property, 217
clientX property, 234, 326
clientY property, 234, 326
clipboard, 203, 243
clipping, 284
cloneNode method, 375
cloning, 375
closePath method, 271
closing tag, 201, 203
closure, 45, 82, 196, 317, 391–394
code, 7, 159, 245

structure of, 21, 40
code golf, 167
code structure, 31, 38, 112, 169
coin, 246–248, 259–263, 287
Coin type, 250, 260
collaboration, 198
collection, 5, 56, 58, 61, 75, 114, 386
collision detection, 257–260, 262, 395
colon character, 17, 33, 59, 219
color, 268, 269, 284, 324, 328, 335
color (CSS), 219
color picker, 328
color picker (exercise), 335, 399
colWidths function, 105
comma character, 184
command key, 232
command line, 338, 340–342
comment, 34, 84, 159, 163, 165, 196,

208, 359, 361, 367, 375, 376,
391

comment field reset (exercise), 378,
402

COMMENT_NODE code, 208
CommonJS, 174, 175, 177, 183, 341,

342
communication, 198, 304
community, 339
comparison, 15, 19, 30, 33, 76, 192,

383
of colors, 400
of DOM nodes, 402
of NaN, 16
of numbers, 15, 25
of objects, 62
of strings, 16
of undefined values, 18

compass direction, 118, 126
compatibility, 6, 198, 204, 296, 328
compilation, 194, 391
completion, 296, 321
complexity, 3, 4, 78, 89, 95, 112, 157,

181, 221, 239, 251
composability, 6, 88, 181
compositing, 328
composition, 112
computed property, 57
computer, 1, 3
concat method, 70, 93, 109, 392
concatenation, 14, 70, 109, 392, 399,

400
concurrency, 239
conditional execution, 17, 27, 33, 36,

190, 379
conditional operator, 17, 20
configuration, 163
confirm function, 26
Confucius, 2
connection, 199, 292, 297, 300, 305,

359, 360
consistency, 34, 198, 209

408

console.log, 5, 9, 15, 25, 43, 45, 52,
72, 138, 340, 348

constant, 73, 261
constructor, 34, 99, 110, 111, 113,

114, 117, 119–121, 127, 135,
141, 152, 161, 248

content negotiation (exercise), 306,
355, 396, 400

Content-Length header, 293
Content-Type header, 293, 345, 349,

350, 356
context, 268, 269, 325, 326, 332
context menu, 231
context parameter, 121, 122
continue keyword, 32
control flow, 27, 29–31, 43, 82, 140,

227, 304, 339
control key, 232
control point, 272, 273
controls object, 325, 328
convention, 34, 180
Conway’s Game of Life, 321
coordinates, 114, 116, 120, 223, 233,

234, 249, 253, 256, 258, 259,
269, 274, 279, 280, 326, 398,
399

copy-paste programming, 50, 170
copying, 375
correlation, 63, 64, 66–68
cosine, 73, 223
counter variable, 29, 31, 224, 382,

383, 393, 396
CPU, 339
crash, 142, 145, 353, 366, 378
createElement method, 213, 324, 391
createPaint function, 325
createReadStream function, 347, 350
createServer function, 345, 347, 363,

364
createTextNode method, 212, 397

createWriteStream function, 347, 352
crisp, 288
critter, 115, 117, 122, 125, 129, 130,

132
Crockford, Douglas, 198
cross-domain request, 299, 331, 336
crying, 151
cryptography, 305
CSS, 219, 220, 236, 253–255, 257,

267, 269, 325
ctrlKey property, 232
curl program, 352
curly braces, 29, 38, 59, 80, 150, 382
cursor, 312, 313
curve, 272, 273
cycle, 207

Dark Blue (game), 245
dash character, 13, 148, 220
data, 2, 10, 55
data attribute, 214, 215, 244
data event, 347
data format, 84, 209, 298
data loss, 378
data set, 65, 84, 108
data structure, 55, 56, 66, 75, 89, 90,

116, 181, 185, 208, 288, 322,
388

data URL, 330
database, 296
dataTable function, 109, 112
date, 149, 150, 152
Date constructor, 152, 153
date field, 328
Date type, 171, 182
Date.now function, 153, 362
dblclick event, 233
debouncing, 241
debugger statement, 138

409

debugging, 6, 134–138, 141, 143, 145,
167

decentralization, 198
decimal number, 10, 137, 156
declaration, 219
decodeURIComponent function, 294,

349, 364, 400
decoupling, 171
deep comparison, 62, 76
deep comparison (exercise), 76, 384
default behavior, 218, 230, 392
default keyword, 33
default value, 19, 90, 270, 320, 383
defensive programming, 123, 124
define function, 177–179
defineProperty function, 102, 110, 386
degree, 274, 280
DELETEmethod, 292, 293, 348, 351,

365, 376
delete operator, 60
denodeify function, 353
dependence, 63
dependency, 170, 174, 177, 179, 183,

343
deserialization, 84
developer tools, 8, 25, 138, 142
dialog box, 24, 26
diamond, 290, 394
digit, 10, 11, 137, 148–151, 168
Dijkstra, Edsger, 115
dimensions, 114, 115, 217, 245, 247,

257, 268, 382
dinosaur, 195
direct child node, 221
directions object, 117, 125
directory, 344, 345, 348, 350, 351,

356, 401
disabled attribute, 311
discretization, 115, 246, 257, 260, 264
dispatching, 33, 363

display, 252, 264, 265, 283, 287, 289,
372, 373

display (CSS), 219, 244, 371
division, 13
division by zero, 13
DNA, 89, 91
do loop, 30
doctype, 201, 202
document, 200, 206, 239, 267
document format, 304, 306
Document Object Model, see DOM
documentation, 180, 338
documentElement property, 207, 298
dollar sign, 22, 153, 158, 165
DOM, 207–209, 211, 212, 214, 221,

228, 233, 246, 247, 252, 254,
255, 267, 268, 288, 298, 308,
312, 324, 372, 375

construction, 209, 212, 213, 324,
372

domain, 200, 293, 299, 319, 331
domain-specific language, 78, 137, 147,

195, 221, 304, 372
DOMDisplay type, 252, 253, 283
dot character, see period character
double click, 233
double-quote character, 14, 168, 184,

201
download, 7, 171, 225, 352, 358, 378
draggable bar example, 234
dragging, 234
drawImage method, 277, 279, 283,

285, 286, 396
drawing, 206, 217, 223, 252, 254, 267–

269, 272, 281, 286, 287, 323,
324, 328, 398

drawing program example, 233, 323
drawTable function, 106
drawTalk function, 374, 375, 379
drop-down menu, 309, 315

410

duplication, 170, 390
dynamic scope, 141
dynamic typing, 134

ECMAScript, 6, 7
ECMAScript 6, 7, 41, 121, 301
ecosystem, 115, 132
ecstatic module, 364
editor, 247
efficiency, 47, 75, 88, 176, 194, 217,

247, 254, 268, 386
Egg language, 184, 185, 188, 189,

191–196, 208
electronic life, 115, 117, 119, 120,

122, 123, 125, 127, 129, 130,
182, 246

elegance, 47, 88, 186
element, 201, 208, 213
ELEMENT_NODE code, 208, 392
elementFromChar function, 120
elements property, 311
ellipse, 222, 224
else keyword, 28
elt function, 213, 324, 372
email, 305
email field, 328
empty set, 160
encapsulation, 95, 96, 112, 116, 117,

170–172, 181, 183, 228, 251,
252

encodeURIComponent function, 294,
361

encoding, 198
encryption, 305
end event, 347
end method, 346, 347, 349, 400
enemies example, 163
energy, 127–129, 387
engineering, 204
ENOENT (status code), 350, 354

Enter key, 312
enter key, 332
entity, 201
entropy, 127
enumerability, 102
environment, 24, 189–192, 240, 391
equality, 16
erase tool, 327, 328
error, 134–137, 139, 142, 144
error event, 301, 317, 352
error handling, 134, 139, 140, 142,

300, 303, 304, 343, 350, 351,
353, 354, 373, 377

error message, 188, 303, 321
error recovery, 139
error response, 293, 300, 351, 353
error tolerance, 123, 202
Error type, 141, 143, 144, 350
escape key, 266
escaping

in HTML, 201, 203
in regexps, 147, 149, 161
in strings, 14, 184
in URLs, 294, 349, 361, 364

Escher, M.C., 267
eval, 174
evaluate function, 188, 189, 191
evaluation, 174, 188, 193, 194
even number, 29, 53
event handling, 179, 227–231, 236,

238, 239, 246, 263, 265, 266,
277, 288, 297, 312–314, 324,
347, 375, 393, 394, 398

event object, 228, 232–234, 326, 335
event propagation, 229, 230, 235, 238,

239
event type, 229
every and some (exercise), 94, 385
every method, 94
evolution, 147, 169

411

exception, 300, 353
exception handling, 140–144, 146, 300,

301, 331, 353, 354, 397, 399
exec method, 151, 152, 162, 163
execution order, 27, 42, 43
exercises, 2, 7, 36, 137
exit method, 340
expectation, 231
experiment, 3, 7, 167, 232
exploit, 204
exponent, 12, 168, 389
exponentiation, 30, 31
exporting, 173, 176, 390
exports object, 173, 175, 176, 342,

390
expression, 21, 22, 26, 29, 31, 42,

173, 184, 185, 189
expressivity, 1, 195
extinction, 132
extraction, 152

factorial function, 9
failure, 300
fallthrough, 33
false, 15
farm example, 50, 52, 154
farmer, 84
field, 233, 294, 308, 311, 314, 318,

322, 324, 328, 378, 402
figlet module, 342
file, 169, 174, 293, 294, 316, 323,

332, 341, 344, 345, 347, 348,
350, 351, 402

file extension, 350
file field, 308, 316, 317
file format, 163
file reading, 317
file server, 370
file server example, 348–352, 354–

356, 400, 401

file system, 316, 324, 331, 343, 344,
348, 402

File type, 317
FileReader type, 317, 332
files property, 317
fill method, 271
fillColor property, 276
filling, 269, 271, 276, 289
fillRect method, 269, 278, 334, 337,

398
fillStyle property, 269, 324, 325, 329
fillText method, 276, 395
filter method, 85, 92, 106, 249, 385
finally keyword, 141, 146, 388
finish event, 352
Firefox, 204, 296
firewall, 357, 359
firstChild property, 210
fixed positioning, 237
FizzBuzz (exercise), 36, 381
flattening (exercise), 93
flexibility, 6
flipHorizontally function, 286, 394
flipHorizontally method, 280
flipping, see mirroring
floating-point number, 12
flood fill (exercise), 336, 399
flow diagram, 154, 156
focus, 233, 238, 310, 311, 313, 314,

378, 402
focus event, 238, 330
focus method, 310
fold function, 87
font, 276, 333
font-family (CSS), 220
font-weight (CSS), 220
food, 127, 128, 130, 132, 387
food chain, 130, 132
for attribute, 314
for loop, 31, 32, 67, 79, 120, 143,

412

383, 384
for/in loop, 67, 68, 102–104, 109,

384, 385
forEach method, 80, 81, 84, 88, 106,

121, 317, 393
form, 294, 295, 308, 311, 312, 357
form (HTML tag), 308, 311, 332,

371, 376, 401, 403
form property, 311
forwarding, 362
fractal example, 281
fractional number, 12, 168, 246
frame, 278, 283, 286, 395
framework, 51, 129
fromCharCode function, 232
fs module, 344, 345, 356
fsp object, 354
function, 5, 24, 38, 135, 169, 184,

185, 193, 394
application, 24–26, 39, 43, 44, 47,

83, 85, 88, 92, 143, 189
as namespace, 170, 171
as property, 58
as value, 38, 42, 45, 80, 81, 85,

88, 92, 127, 228, 264, 265,
299, 394

body, 38
declaration, 42, 43
definition, 38, 42, 49
higher-order, 42, 80, 81, 84–88,

90, 105, 121, 122, 158, 264,
265

model of, 46
naming, 50, 51
purity, 52
scope, 39, 41, 121, 196
wrapping, 83

Function constructor, 175, 179, 192,
194, 321, 397

function keyword, 38, 42, 173

Function prototype, 98, 101
future, 7, 24, 42, 121, 166, 180, 291,

301

game, 231, 245, 246, 248, 263, 266,
283

screenshot, 256, 287
game of life (exercise), 321, 398
GAME_LEVELS data set, 266
garbage collection, 11
garble example, 341
gardening, 358
gatherCorrelations function, 67
gaudy home pages, 243
generation, 321, 322, 398
get function, 302
GETmethod, 292–294, 296, 312, 346,

348, 350, 361, 365, 401
getAttribute method, 214, 216
getBoundingClientRect method, 217,

234, 326
getContext method, 269
getDate method, 153
getDay method, 171
getElementById method, 211
getElementsByClassName method, 211
getElementsByName method, 314
getElementsByTagName method, 211,

213, 215, 225, 392
getFullYear method, 153
getHours method, 153
getImageData method, 335, 336
getItem method, 318, 320
getMinutes method, 153
getMonth method, 153
getPrototypeOf function, 98–100, 196,

391
getResponseHeader method, 296
getSeconds method, 153
getter, 110, 114

413

getTime method, 152
getURL function, 300
getYear method, 153
global object, 74, 121, 135, 341
global scope, 39, 40, 74, 170, 172,

173, 177, 191, 228, 240, 340,
341, 391

globalCompositeOperation property,
328

Goethe, Johann Wolfgang von, 308
Google, 204
graceful degradation, 379
grammar, 21, 164
grandfather, 89, 91
graph, 289
graphical user interface, 1
graphics, 246, 247, 252, 254, 267,

268, 277, 288, 289
gravity, 261
greater than, 15
greed, 159, 160
grid, 115, 116, 122, 124, 246–248,

253, 258, 259, 321, 336, 398
Grid type, 117
groupBy function, 93
grouping, 13, 29, 93, 151, 158, 385,

388

h1 (HTML tag), 201, 216
hard drive, 10, 316, 319, 338, 378
hard-coding, 211, 290, 326
hasEvent function, 65
hash character, 196
hasOwnProperty method, 103, 196,

391
head (HTML tag), 201, 202, 207
head property, 207
header, 293, 296, 297, 299, 346
height (CSS), 335
help text example, 238

helper function, 209
herbivore, 130, 132, 387
hexadecimal number, 156, 294
hidden element, 219, 244, 371
higher-order function, see function,

higher-order
highlightCode function, 215
history, 6, 95, 369
holy war, 95
hooligan, 362
Host header, 293, 297
hover effect, 235, 236
href attribute, 201, 211, 214, 330
HTML, 200, 202, 206, 208, 225, 267–

269, 288, 289, 292, 318, 324,
356

html (HTML tag), 202, 207
HTML5 form fields, 328
HTTP, 199, 200, 292–296, 299, 300,

302, 304, 305, 308, 345, 346,
348, 351, 352, 356, 359, 360

http module, 345, 346, 355
HTTPS, 200, 305, 346
https module, 346
human language, 1, 21, 38
hype, 96
Hypertext Markup Language, see HTML
Hypertext Transfer Prototol, see HTTP

id attribute, 211, 220, 314, 371
idempotency, 351, 401
identifier, 185
identitiy, 62
if keyword, 27, 165

chaining, 28, 33, 381, 382
image, 201, 212, 239, 267, 294, 324,

331
imagination, 245
img (HTML tag), 201, 212, 218, 239,

267, 277, 278, 331

414

implementation, 166
implementation detail, 171
implements (reserved word), 24
in operator, 61, 66, 102–104, 384
indentation, 31, 32
index, 57, 106
index property, 151
index.html, 370
indexOf method, 66, 69, 70, 148, 161,

369, 397
infinite loop, 32, 44, 126, 143, 383
infinity, 13
inheritance, 98, 111–113, 127, 144,

350
ini file, 163, 170
initialization, 238, 371, 372
inline element, 216, 218
inner function, 40, 82, 106, 392
inner loop, 89, 157
innerHeight property, 237
innerWidth property, 237
input, 26, 123, 134, 139, 227, 247,

310, 338, 366
input (HTML tag), 238, 243, 308,

312, 314, 316
input event, 313, 397
insertBefore method, 212
install, 342
installation, 170
instance, 99
instanceof operator, 113, 144
instantiateTemplate function, 379, 402
instantiation, 374
instruction, 4
integer, 12
integration, 147, 209
interconnection, 169
interface, 95, 104, 105, 107, 111, 114,

117, 124, 147, 171–174, 178,
209, 251, 267, 268, 283, 295,

296, 302, 312, 360, 386
design, 51, 147, 152, 158, 162,

171, 180, 209, 270, 295
interface (reserved word), 24
interface design, 181
internationalization, 165
Internet, 163, 198, 199, 203, 356, 357
Internet Explorer, 204, 295
interpretation, 7, 174, 188, 189, 193,

194
interview question, 36
inversion, 149
invoking (of functions), see function

application
IP address, 200, 292, 293, 357
isEven (exercise), 53, 382
isInside function, 235
isNaN function, 28
isolation, 95, 170–172, 174, 203
iteration, 114

Jacques, 55
Java, 6
JavaScript, 6

absence of, 379
availability of, 1
flexibility of, 6
history of, 6, 198
in HTML, 202
syntax, 21
uses of, 7
versions of, 7
weaknesses of, 6

JavaScript console, 8, 15, 25, 138,
142, 321, 340

JavaScript Object Notation, see JSON
job, 68, 275
join method, 58, 101, 107, 192, 342
journal, 56, 59, 61, 63, 67, 72
JOURNAL data set, 65

415

JSON, 84, 85, 298, 303, 319, 320,
343, 360, 361, 365, 366, 402

JSON.parse function, 84, 402
JSON.stringify function, 84
jump, 5
jump-and-run game, 245
jumping, 246, 261, 262

Kernighan, Brian, 134
key code, 231, 232, 263
keyboard, 24, 231, 246, 259, 261–

263, 266, 310, 313
keyboard focus, see focus
keyCode property, 231, 392
keydown event, 231, 232, 241, 263,

392
keypress event, 232, 392
keyup event, 231, 232, 263
keyword, 22, 24, 215
Khasekhemwy, 313
kill, 346
Knuth, Donald, 38
Kurds, 243

label, 277, 290
label (HTML tag), 314
labeling, 314
landscape example, 40
Last-Modified header, 293
lastChild property, 210
lastIndex property, 162, 163
lastIndexOf method, 69
lava, 246–248, 250, 255, 257, 259–

261, 263, 287
Lava type, 250, 260
layering, 181, 199
layout, 216, 217, 219
laziness, 217
leaf node, 208
leak, 204, 266, 331, 355, 400

learning, 2, 3, 7, 358
left (CSS), 222–224, 226, 335
legend, 119
length property, 71

for array, 58, 80
for string, 50, 57, 71, 383

less than, 15
let keyword, 24, 41
level, 246–249, 252, 253, 255, 259,

265, 266, 394
Level type, 248
lexical scoping, 40, 41, 82
library, 170, 209, 300, 341–343
life expectancy (exercise), 93, 385
LifeLikeWorld type, 127
line, 22, 31, 164, 165, 267, 269–272,

274, 275, 290, 327, 394
line break, 14, 164
line comment, 34, 160
line tool, 324, 326, 327
line width, 269, 279
lineCap property, 327
lines of code, 193
lineTo method, 270, 274
lineWidth property, 269, 324, 325,

327, 330
link, 201, 209, 211, 230, 233, 324
link (HTML tag), 257
linked list, 75, 384
list (exercise), 75, 384
listen method, 345, 346
listening (TCP), 199, 345
literal expression, 21, 147, 187, 189
literate programming, 169
live data structure, 206, 213, 222,

393
live view, 359, 360, 373
lives (exercise), 266, 393
load event, 238, 277, 286, 297, 317,

331, 396

416

loading, 177
local scope, 170, 193
local variable, 39, 45, 81, 82, 196,

383, 393
localhost, 345
localStorage object, 318–320, 376
locked box (exercise), 146, 388
logging, 138
logical and, 16
logical operators, 16
logical or, 16
long polling, 359–361, 366–368, 372,

377
long-polling, 360
loop, 5, 29, 31, 36, 37, 47, 79–81, 87–

89, 121, 163, 379, 382, 383,
393, 394

termination of, 32
loop body, 30, 80
lycanthropy, 55, 63

machine code, 3, 194
mafia, 204, 299
magic, 90, 98, 184, 330
malicious script, 203, 239
man-in-the-middle, 305
map, 66, 89, 93, 102, 103, 249, 311,

385
map method, 86, 105–107, 121, 342,

385
Marcus Aurelius, 227
match method, 151, 162
matching, 148, 153, 154, 162, 167

algorithm, 154–157
Math object, 53, 57, 72
Math.abs function, 398
Math.acos function, 73
Math.asin function, 73
Math.atan function, 73
Math.ceil function, 74, 258, 285

Math.cos function, 73, 223, 224, 334,
395

Math.floor function, 73, 258, 285
Math.max function, 25, 57, 72, 284
Math.min function, 26, 53, 72, 284,

398
Math.PI constant, 73, 274
Math.random function, 73, 119, 130,

251, 322
Math.round function, 74
Math.sin function, 73, 223, 224, 251,

260, 334
Math.sqrt function, 65, 72, 386
Math.tan function, 73
mathematics, 47, 81
max-height (CSS), 255
max-width (CSS), 255
maximum, 25, 72, 105
media type, 304, 306, 350
medicine, 86
meetup, 358
memory, 4, 10, 22, 44, 56, 62, 76,

194, 318, 378
mental model, 180
Mephistopheles, 308
mesh, 199
message, 240
message box, 24
message event, 240
meta key, 232
metaKey property, 232
method, 58, 69, 83, 95, 97, 98, 110,

112, 117, 135, 292, 293, 304,
346, 352, 360, 363

method attribute, 294
method call, 92, 97
methods object, 349
Microsoft, 204, 295
Microsoft Paint, 323
mime module, 350

417

MIME type, 306, 350, 355
mini application, 318
minimalism, 169, 245
minimum, 26, 53, 72, 87
minimum (exercise), 53, 382
minus, 13, 168
Miro, Joan, 323
mirror, 280, 291, 396
mirroring, 279, 280
MKCOL method, 356, 401
mkdir function, 401
modification date, 351
modifier key, 232
modularity, 295
module, 169–171, 173, 174, 176, 177,

182, 252, 338, 341, 342, 363
module loader, 174, 177, 180, 341
module object, 176
modulo operator, 13
Mongolian vowel separator, 166
month name (exercise), 182, 389
Mosaic, 204
motion, 246
MOUNTAINS data set, 104, 108, 225
mouse, 24, 324, 326, 334, 397
mouse button, 229, 233
mouse cursor, 233
mouse trail (exercise), 243, 392
mousedown event, 229, 233, 324, 326,

397
mousemove event, 234, 235, 241, 242,

244, 324, 327, 392
mouseout event, 235
mouseover event, 235, 330
mouseup event, 233, 235, 324, 327
moveTo method, 270, 274
Mozilla, 204, 296
multiple attribute, 315–317
multiple choice, 309
multiple-choice, 308, 314, 315

multiplication, 12, 249, 260
multiplier function, 46
music, 245
mutability, 60, 62, 101
mutation, 386

name attribute, 311, 314
namespace, 72, 170, 171, 174, 175
namespace pollution, 72, 170, 172
naming, 4, 6
NaN, 13, 16, 18, 135
negation, 15, 17
neighbor, 321, 398
nerd, 161
nesting

in regexps, 157
of arrays, 64
of expressions, 21, 186
of functions, 40, 82, 106
of loops, 37, 89, 120, 382
of objects, 207, 210
of scope, 40

Netscape, 6, 204
network, 198, 199, 266, 304, 305, 338,

339, 362
new operator, 99
newline character, 14, 37, 149, 160,

164, 397
nextSibling property, 210
node, 207, 208
node program, 340
Node.js, 7, 8, 25, 171, 177, 338, 340–

353, 355, 359, 360, 363, 378
node_modules directory, 341, 343
NodeList type, 209
nodeType property, 208, 392, 393
nodeValue property, 211
nonbreaking space, 166
not a number, 13
note-taking example, 319

418

notification, 359
NPM, 171, 341–343, 350, 353, 363,

364
npm program, 342, 343, 350
null, 17, 18, 48, 57, 76, 83, 92, 119,

139, 385
number, 11, 62, 148, 168, 389

conversion to, 18, 27
notation, 11, 12
precision of, 12
representation, 11
special values, 13

number field, 328
Number function, 27, 34
number puzzle example, 48

object, 25, 55, 59, 61, 62, 66, 72, 74,
75, 84, 95, 98, 113, 116, 207,
384

as map, 66, 89, 93, 102, 103, 117,
120, 249, 385

creation, 99
identity, 62
looping over, 67
property, 57

Object prototype, 98, 102, 104
object-oriented programming, 95, 96,

104, 112
Object.create function, 99, 103, 193
Object.keys function, 109, 119, 225
obstacle, 126, 257, 258
obstacleAt method, 258
offsetHeight property, 217
offsetWidth property, 217
on method, 347
onclick attribute, 203, 228
open method, 296, 297
OpenGL, 268
opening tag, 201
operator, 12, 15, 19, 185, 192

application, 12
optimization, 47, 52, 88, 217, 241,

247, 254, 288, 291, 320, 330,
337, 345

option (HTML tag), 309, 310, 315,
326, 401

optional, 150
optional argument, 45, 71, 75
options property, 315
ordering, 199
organization, 169
outline, 269
output, 15, 24, 25, 134, 138, 139,

192, 338, 355, 397
overflow, 12
overflow (CSS), 255
overlap, 258
overlay, 220
overriding, 100, 104, 111, 390
overwriting, 352, 357, 366

p (HTML tag), 201, 216
package (reserved word), 24
package manager, 171
package.json file, 343
padding (CSS), 253
page reload, 239, 308, 312, 318, 403
pageX property, 233, 335
pageXOffset property, 217
pageY property, 233, 335
pageYOffset property, 217, 237
Palef, Thomas, 245
paragraph, 201
parallelism, 239, 294, 339, 340
parameter, 25, 38, 39, 44, 71, 81–83,

136, 393
parent node, 229
parentheses, 13, 21, 25, 28, 29, 31,

80, 151, 153, 154, 165, 173,
184, 388

419

parentNode property, 210
parse function, 188
parseApply function, 187
parseExpression function, 186
parseINI function, 165
parsing, 84, 134, 165, 173, 184–186,

188, 189, 192, 202, 206, 295,
349, 368

partial application, 92
password, 305, 355, 363
password field, 308
path

canvas, 270–272, 274, 327, 394
closing, 271
file system, 341, 348, 350, 401
URL, 293, 296, 348, 349, 360,

363
pathfinding, 126, 132, 387
patience, 336
pattern, 147–149, 160
pausing (exercise), 266, 394
pea soup, 79
peanuts, 68
percent, 237
percent sign, 294
performance, 157, 194, 217, 239, 247,

288, 337, 345
period character, 25, 57, 149, 160,

168, 400
persistence, 318, 359, 376, 378, 402
phase, 251, 260
phi coefficient, 63–65
phi function, 65
photosynthesis, 127, 128, 130
physics, 257, 261, 393
physics engine, 257
pi, 12, 73, 223, 251, 274
PI constant, 73
picture, 267, 278, 288, 324
pie chart example, 275, 277, 290, 395

pipe, 199
pipe character, 154, 389
pipe method, 349, 352
pixel, 217, 224, 233, 247, 253, 267–

269, 277, 278, 284, 288, 291,
331, 335, 336

pixel art, 278
pizza, 63, 64
placeholder, 372, 375
plant, 127–130, 132, 387
Plant type, 129
PlantEater type, 130
platform game, 245, 266
Plaugher, P.J., 134
player, 245–249, 255, 257, 259, 260,

262, 265, 287
player character, 278, 286
Player type, 250, 260
plus character, 12, 150, 168
plus function, 88
Poignant Guide, 21
pointer, 209
polling, 227
polymorphism, 104, 112
pop method, 58, 69
Popper, Karl, 213
port, 199, 292, 345, 346
pose, 278
position, 217
position (CSS), 222, 226, 237, 246,

254, 255, 335, 398
POST method, 293, 295, 312, 361,

376, 403
postMessage method, 240
power example, 38, 45, 47, 193
pre (HTML tag), 215
precedence, 13, 17, 220, 221
predators (exercise), 132, 387
predicate function, 85, 94
predictability, 180

420

premature optimization, 47
preprocessing, 177
preventDefault method, 230, 237, 239,

263, 312, 326, 392
previousSibling property, 210
primitiveMultiply (exercise), 146, 388
privacy, 204, 331
private (reserved word), 24
private property, 124, 146
process object, 340
profiling, 47, 89
program, 21, 27

nature of, 2
program size, 78, 167, 251, 304
programming

difficulty of, 2
history of, 4
joy of, 3

programming language, 1, 3, 134, 170,
184, 195, 209, 215, 338

power of, 6
programming style, 3, 22, 29, 31, 32,

34, 106, 110, 112, 251, 354
progress bar, 236
project chapter, 115, 169, 184, 245,

323, 358
promise, 301–303, 306, 317, 353, 354,

396
Promise constructor, 302, 306, 396
promise module, 353
prompt function, 26, 333
promptDirection function, 143, 144
promptInteger function, 139
propagation, see event propagation
property, 25, 57, 59, 74, 97, 98, 100,

102, 109, 110, 120, 134, 214,
269

assignment, 60
deletion, 60
model of, 60

naming, 124
own, 103
testing for, 61

protected (reserved word), 24
protocol, 198–200, 292, 293, 330
prototype, 98–101, 111, 173, 193, 196,

391, 402
avoidance, 103
diagram, 100
interference, 101
pollution, 102, 103

prototype property, 99, 100
proxy, 363
pseudo array, see array-like object
pseudorandom number, 73
pseudoselector, 236
public (reserved word), 24
public space (exercise), 356, 401
publishing, 343
punch card, 4
pure function, 51, 52, 75, 85, 88, 181,

322, 386, 398
push method, 58, 69
pushing data, 359
PUT method, 292, 293, 348, 352,

361, 366, 376, 401
Pythagoras, 334, 386

quadratic curve, 272
quadraticCurveTo method, 272, 395
query string, 294, 295, 361, 368, 403
querySelector method, 222, 324, 374
querySelectorAll method, 221
question mark, 17, 150, 160, 294
quirks, 204
quotation mark, 14, 168
quoting

in JSON, 84
of object properties, 59

quoting style (exercise), 168, 388

421

rabbit example, 97, 99, 101
radian, 274, 280
radio button, 308, 314
radius, 273, 334
radix, 10
raising (exception), 140
random number, 73, 119, 130, 251,

333
randomElement function, 119
range, 149, 150
range function, 5, 75, 383
ray tracer, 288
read-eval-print loop, 340
readability, 4, 5, 34, 47, 51, 80, 88,

139, 169, 189, 256, 290, 301,
304, 324

readable stream, 346, 347, 349, 400
readAsDataURL method, 332
readAsText method, 317
readdir function, 344, 351
readFile function, 174, 344, 353, 402
readFileSync function, 345
reading code, 7, 115
readStreamAsJSON function, 366, 367
readStreamAsString function, 400
real-time, 227
reasoning, 16
recipe analogy, 79
record, 59, 117
recovery, 377
rect (SVG tag), 268
rectangle, 246, 258, 269, 290
rectangle tool (exercise), 334, 398
recursion, 44, 47, 48, 53, 76, 90, 186,

188, 189, 210, 225, 281, 375,
382, 384, 388, 392, 402

reduce method, 86, 87, 90, 93, 105,
106

reduceAncestors function, 90, 91
ReferenceError type, 196

RegExp constructor, 147, 160
regexp golf (exercise), 167
registerChange function, 366, 369, 402
regular expression, 147–149, 158–160,

162, 163, 166, 167, 187, 215,
363, 364, 391, 400

alternatives, 154
backtracking, 156
boundary, 153
creation, 147, 160
escaping, 147, 161, 389
flags, 151, 158, 161, 389
global, 158, 162
grouping, 151, 158
internationalization, 165
matching, 154, 155, 162
methods, 148, 152, 161
repetition, 150

relatedTarget property, 235
relative path, 341, 348, 355, 401
relative positioning, 222, 223
relative URL, 296
relativePos function, 326, 398, 399
remainder operator, 13, 32, 278, 381,

382, 392, 394
remote access, 348
remote procedure call, 304
removeChild method, 212
removeEventListener method, 228, 394
removeItem method, 318
rename function, 344
rendering, 268
repeating key, 231
repetition, 49, 150, 157, 160, 241,

379, 402
replace method, 158, 168, 388, 400
replaceChild method, 212
replaceSelection function, 313
reproduction, 127, 129, 130, 132, 387
request, 292–294, 296, 312, 345, 346,

422

352, 359
request function, 346, 347, 355, 400
requestAnimationFrame function, 223,

239, 241, 264, 291, 393
require function, 174–177, 183, 341,

343, 350, 363
RequireJS, 180
reserved word, 24, 216
reset, 402
resize, 332
resolution, 341
resource, 200, 293, 294, 304, 330,

348, 365
response, 292, 293, 299, 346, 349,

352, 354, 400
responseText property, 296, 297
responseXML property, 298
responsiveness, 227, 338
restore method, 281, 282
result property, 317
return keyword, 39, 44, 99, 382, 385
return value, 25, 39, 139, 343, 385
reuse, 52, 170, 171, 342
reverse method, 75
reverse proxy, 363
reversing (exercise), 75, 383
rgb (CSS), 253, 336, 399
right-aligning, 109, 225
robustness, 360
root, 208
rotate method, 279, 280, 282
rotation, 290, 394
rounding, 73, 138, 258, 259, 273, 285
router, 357, 359, 363
Router type, 363, 364
row, 225
rowHeights function, 105
RTextCell type, 111
rule (CSS), 220, 221
run function, 192

run-time error, 134, 136, 137, 139,
145, 391

runAnimation function, 264, 266
runGame function, 265, 266, 393
runLevel function, 264, 266
running code, 7

Safari, 204
sandbox, 7, 55, 85, 108, 203, 206,

299, 331, 336
save link, 330
save method, 281, 282
saving, 324
scale method, 279, 280
scaling, 253, 277, 279, 285, 396
scheduling, 338
scientific notation, 12, 168
scope, 39–41, 45, 74, 121, 170, 171,

175, 196, 391
script (HTML tag), 202, 203, 238,

239, 372
scroll event, 236, 241
scrolling, 230, 236, 237, 255, 263,

284
search method, 161
searching, 155, 156, 161, 211, 336
section, 164, 165
Secure HTTP, see HTTPS
security, 203, 204, 299, 305, 316, 318,

331, 350, 356, 362
SecurityError type, 331, 399
select (HTML tag), 309, 310, 315,

319, 324, 326, 401
selected attribute, 315
selection, 312, 326
selectionEnd property, 312
selectionStart property, 312
selector, 221
self variable, 121
self-closing tag, 201

423

semicolon, 21, 22, 31, 219
send method, 296, 297
sequence, 150
sequence (exercise), 114, 386
serialization, 84
server, 199, 200, 292, 293, 296, 297,

299, 304, 338, 345–348, 359,
363

session, 320, 331
sessionStorage object, 320
set, 148, 149, 208
setAttribute method, 214, 216
setInterval function, 241, 278, 333
setItem method, 318, 320
setRequestHeader method, 297, 306
setter, 110
setTimeout function, 240, 241, 369
shape, 267, 270, 271, 273, 277, 290
shapes (exercise), 290, 394
shared property, 99–101, 111
shift key, 232
shift method, 69
shiftKey property, 232
short-circuit evaluation, 19, 48, 190,

385
SICP, 184
side effect, 21, 22, 25, 32, 39, 52,

62, 75, 85, 162, 172, 209, 212,
217, 270, 281

sign, 12, 168, 389
sign bit, 12
signal, 10
simplicity, 181, 194
simulation, 115, 119, 122, 125, 127,

131, 245, 250, 321, 393
sine, 73, 223, 251, 260
single-quote character, 14, 168, 203
size attribute, 315
skill, 323
skill-sharing, 358

skill-sharing project, 358–360, 363,
370, 379

skipSpace function, 187, 196
slash character, 13, 34, 147, 160, 296,

356, 400, 401
slice method, 69, 70, 213, 318, 390
sloppy programming, 123, 242
smooth animation, 223
SMTP, 199
some method, 94, 364
sorting, 208
source property, 162
special form, 184, 189, 190
special return value, 139
specialForms object, 190
specificity, 221
speed, 291, 395
spell-check example, 181
spiral, 290, 394
splice method, 369
split method, 107, 342
spray paint tool, 333
sprite, 278, 285, 286
spy, 236
square, 27, 38
square brackets, 56, 57, 66, 149, 383
square example, 42
square root, 65, 72, 386
src attribute, 201, 202
stability, 132, 171, 387
stack, see call stack, 300
stack overflow, 44, 47, 53, 382
stack trace, 141, 144, 353
standard, 6, 24, 34, 43, 85, 121, 141,

165, 174, 177, 198, 328, 338,
341

standard environment, 24
standard output, 340, 348
standards, 204
star, 290, 395

424

Star Trek, 272
starvation, 132, 387
stat function, 344, 350, 351, 354
state, 22, 30–32, 249, 269, 281, 283,

378, 386, 387, 394
statement, 21, 22, 27, 29, 31, 38, 173
static (reserved word), 24
static file, 360, 364
static typing, 134
Stats type, 351
status code, 293, 296, 300, 301, 340,

349
status property, 296
statusText property, 296
stdout property, 348
stoicism, 227
stopPropagation method, 229
stream, 199, 346, 347, 349, 352
StretchCell (exercise), 114, 386
strict mode, 135
string, 14, 56, 58, 62, 232

indexing, 54, 70, 71, 151
methods, 70, 107, 151
notation, 14
properties, 70
searching, 70

String function, 27, 104
stroke method, 270–272
strokeRect method, 269, 395
strokeStyle property, 269, 324, 327,

329
strokeText method, 276
stroking, 269, 276, 289
strong (HTML tag), 215, 216, 218
structure, 169, 170, 201, 206
structure sharing, 76
style, 218
style (HTML tag), 220
style attribute, 218–220, 252
style sheet, 220, 221, 252, 253, 255,

257, 330, 371
submit, 308, 311, 312
submit event, 312, 332, 371, 376, 401
substitution, 52
subtraction, 13, 114
suggestion, 321
sum function, 5, 75
summing (exercise), 75, 383
summing example, 5, 78, 86, 192
survey, 275
Sussman, Gerald, 184
SVG, 267, 269, 288, 289
switch keyword, 33
synchronization, 362, 373, 377
synchronous I/O, 177, 297, 338, 339,

345, 396
syntax, 11, 12, 14, 21, 22, 24, 27, 29,

31, 33, 38, 42, 59, 134, 135,
140, 143, 168, 173, 184, 185

syntax highlighting example, 215, 216
syntax tree, 185, 186, 188, 207, 208
SyntaxError type, 187

tab character, 14, 31
tab key, 310
tabbed interface (exercise), 244, 393
tabindex attribute, 233, 310
table, 63–65, 104, 225, 253
table (HTML tag), 225, 246, 253,

398
table example, 104–108, 111, 225,

391
tableFor function, 65
tag, 200, 201, 206, 220
tagName property, 225
tainting, 331
talk, 358, 359, 365–367, 373
talksAbout function, 210
tampering, 305
tangent, 73

425

target property, 230, 235, 314, 397
task management example, 69
taste, 169, 183
TCP, 199, 292, 360
td (HTML tag), 225
template, 372, 374, 378, 379, 402,

403
template-repeat attribute, 379, 402
tentacle (analogy), 23, 60, 62
ternary operator, 17, 20
test method, 148
test suite, 136, 137
testing framework, 137
text, 14, 169, 200, 201, 206, 208, 215,

232, 276, 288–290, 312, 315,
333, 344, 397

text field, 238, 243, 308–310, 312,
313, 321, 332

text input, 26
text node, 208, 210, 213, 324, 393
text wrapping, 288
text-align (CSS), 225
TEXT_NODE code, 208, 393
textAlign property, 276, 395
textarea (HTML tag), 241, 309, 312,

313, 319, 321, 401
textBaseline property, 276, 395
TextCell type, 108, 111
textContent property, 215, 397
th (HTML tag), 225
then method, 302–304, 396
theory, 138
this, 58, 97, 99, 121, 123, 127, 135,

173
thread, 239, 240, 339, 340
throw keyword, 140, 141, 144, 146,

353, 388
Tiger type, 132
tile, 285
time, 149, 150, 152, 223, 242, 257–

260, 264, 266, 283, 286, 373
time field, 328
timeline, 202, 223, 227, 239, 339
timeout, 240, 360, 361, 369
times method, 249
title, 371
title (HTML tag), 201, 202
toDataURL method, 330, 331, 335
toLowerCase method, 58, 225
tool, 147, 167, 324, 326, 333, 334
tools object, 326
top (CSS), 222–224, 226, 335
top-level scope, see global scope
toString method, 98, 101, 102, 104,

116, 120, 348
toUpperCase method, 58, 225, 347
tr (HTML tag), 225
trackDrag function, 327, 333, 398
trackKeys function, 263, 266
transform (CSS), 267
transformation, 279–281, 291, 394
translate method, 279, 280
Transmission Control Protocol, see

TCP
transparent, 268, 278, 335, 336
transpilation, 194
trapezoid, 290, 394
traversal, 155
tree, 90, 98, 185, 207, 208
trial and error, 138, 261, 273
triangle (exercise), 36, 381
trigonometry, 73, 223
trim method, 71
true, 15
trust, 203
try keyword, 141, 300, 301, 331, 353,

388, 397
Turkish, 243
turn, 115, 116
Twitter, 293

426

type, 11, 15, 113, 134
type attribute, 308, 312
type coercion, 18, 19, 27
type property, 185, 229
typeof operator, 15, 76, 384
typing, 232, 241, 243
typo, 134

unary operator, 15
uncaught exception, 142, 301, 353
undefined, 17, 18, 23, 39, 44, 57, 60,

134, 135, 139
underline, 218
underscore character, 22, 34, 106, 124,

160
Unicode, 16, 149, 165, 166, 232, 342
unicycling, 358
Uniform Resource Locator, see URL
uniformity, 185, 334
uniqueness, 220
unit (CSS), 224, 237
Unix, 351, 352
Unix time, 153, 362
unlink function, 344
unshift method, 69
UnterlinedCell type, 109
unwinding the stack, 140
upcasing server example, 347
upgrading, 170
upload, 316
URL, 199, 200, 268, 294, 296, 305,

324, 330, 331, 346, 349, 361,
376

URL encoding, 294, 403
url module, 349, 368
urlToPath function, 349, 355, 356
use strict, see strict mode
user experience, 227, 300, 311, 334,

359, 373
user interface, 143

users’ group, 358
UTF-8, 344

validation, 123, 128, 129, 139, 145,
184, 248, 256, 312, 366–368

value, 11
value attribute, 308, 312, 315
var keyword, 22, 23, 39, 135
variable, 4, 25, 30, 31, 37, 38, 42,

60, 63, 88, 143, 163, 191, 194,
196, 318

assignment, 22, 40, 42
definition, 22, 196, 391
from parameter, 39, 46
global, 39, 135, 174, 266, 340,

341
model of, 23, 62
naming, 22, 24, 34, 40, 50, 72,

136
variadic function, 72
vector (exercise), 114, 386
vector graphics, 277
Vector type, 114, 116, 117, 136, 249,

260, 395
verbosity, 324, 340, 353
version, 174, 201, 293
version control, 170
View type, 117, 118, 123, 124, 126
viewport, 234, 255, 256, 283, 284,

287
virus, 203
vocabulary, 38, 78, 79, 88, 92
void operator, 24
volatile data storage, 10

walk, 337
walking, 286
wall, 115, 120, 247
wall following, 125, 387
Wall type, 120

427

WallFollower type, 125
wave, 251, 260
Web, see World Wide Web
web application, 6, 318, 323, 379
web browser, see browser
web programming, 205
web sockets, 360
web worker, 240
WebDAV, 356
webgl (canvas context), 268
website, 203, 204, 294, 299, 356, 358
weekday example, 171, 175, 177, 178,

182
weekend project, 356
Weizenbaum, Joseph, 2
weresquirrel example, 55, 59, 61, 63,

66–68
which property, 228, 235
while loop, 5, 29, 31, 50, 163, 260
whitespace, 31, 34, 71, 148, 149, 161,

166, 184, 187, 196, 211, 361,
391, 393

why, 21
width (CSS), 335
window, 228, 229, 235, 238, 341
window variable, 74
Windows, 356
with statement, 136
withContext function, 141, 142
wizard (mighty), 4
word boundary, 154
word character, 149, 154, 165
work list, 399
workbench (exercise), 321, 397
world, 115, 116, 245
World type, 119, 120, 122, 124, 127
World Wide Web, 6, 84, 177, 198,

199, 203, 204, 292
writable stream, 346–349
write method, 346, 347

writeFile function, 344, 347, 402
writeHead method, 345
writing code, 7, 115
WWW, see World Wide Web

XML, 209, 268, 295, 298
XML namespace, 268
XMLHttpRequest, 295–297, 299, 306,

312, 356, 372, 401
xmlns attribute, 268

yield (reserved word), 24
Yuan-Ma, 10, 338

Zawinski, Jamie, 147
zero-based counting, 54, 57, 152
zeroPad function, 51
zigzag, 394
zooming, 288

428

	On programming
	Why language matters
	What is JavaScript?
	Code, and what to do with it
	Overview of this book
	Typographic conventions
	Values, Types, and Operators
	Values
	Numbers
	Strings
	Unary operators
	Boolean values
	Undefined values
	Automatic type conversion
	Summary

	Program Structure
	Expressions and statements
	Variables
	Keywords and reserved words
	The environment
	Functions
	The console.log function
	Return values
	prompt and confirm
	Control flow
	Conditional execution
	while and do loops
	Indenting Code
	for loops
	Breaking Out of a Loop
	Updating variables succinctly
	Dispatching on a value with switch
	Capitalization
	Comments
	Summary
	Exercises

	Functions
	Defining a function
	Parameters and scopes
	Nested scope
	Functions as values
	Declaration notation
	The call stack
	Optional Arguments
	Closure
	Recursion
	Growing functions
	Functions and side effects
	Summary
	Exercises

	Data Structures: Objects and Arrays
	The weresquirrel
	Data sets
	Properties
	Methods
	Objects
	Mutability
	The lycanthrope's log
	Computing correlation
	Objects as maps
	The final analysis
	Further arrayology
	Strings and their properties
	The arguments object
	The Math object
	The global object
	Summary
	Exercises

	Higher-Order Functions
	Abstraction
	Abstracting array traversal
	Higher-order functions
	Passing along arguments
	JSON
	Filtering an array
	Transforming with map
	Summarizing with reduce
	Composability
	The cost
	Great-great-great-great-…
	Binding
	Summary
	Exercises

	The Secret Life of Objects
	History
	Methods
	Prototypes
	Constructors
	Overriding derived properties
	Prototype interference
	Prototype-less objects
	Polymorphism
	Laying out a table
	Getters and setters
	Inheritance
	The instanceof operator
	Summary
	Exercises

	Project: Electronic Life
	Definition
	Representing space
	A critter's programming interface
	The world object
	this and its scope
	Animating life
	It moves
	More life forms
	A more lifelike simulation
	Action handlers
	Populating the new world
	Bringing it to life
	Exercises

	Bugs and Error Handling
	Programmer mistakes
	Strict mode
	Testing
	Debugging
	Error propagation
	Exceptions
	Cleaning up after exceptions
	Selective catching
	Assertions
	Summary
	Exercises

	Regular Expressions
	Creating a regular expression
	Testing for matches
	Matching a set of characters
	Repeating parts of a pattern
	Grouping subexpressions
	Matches and groups
	The date type
	Word and string boundaries
	Choice patterns
	The mechanics of matching
	Backtracking
	The replace method
	Greed
	Dynamically creating RegExp objects
	The search method
	The lastIndex property
	Parsing an INI file
	International characters
	Summary
	Exercises

	Modules
	Why modules help
	Using functions as namespaces
	Objects as interfaces
	Detaching from the global scope
	Evaluating data as code
	Require
	Slow-loading modules
	Interface design
	Summary
	Exercises

	Project: A Programming Language
	Parsing
	The evaluator
	Special forms
	The environment
	Functions
	Compilation
	Cheating
	Exercises

	JavaScript and the Browser
	Networks and the Internet
	The Web
	HTML
	HTML and JavaScript
	In the sandbox
	Compatibility and the browser wars

	The Document Object Model
	Document structure
	Trees
	The standard
	Moving through the tree
	Finding elements
	Changing the document
	Creating nodes
	Attributes
	Layout
	Styling
	Cascading styles
	Query selectors
	Positioning and animating
	Summary
	Exercises

	Handling Events
	Event handlers
	Events and DOM nodes
	Event objects
	Propagation
	Default actions
	Key events
	Mouse clicks
	Mouse motion
	Scroll events
	Focus events
	Load event
	Script execution timeline
	Setting timers
	Debouncing
	Summary
	Exercises

	Project: A Platform Game
	The game
	The technology
	Levels
	Reading a level
	Actors
	Encapsulation as a burden
	Drawing
	Motion and collision
	Actors and actions
	Tracking keys
	Running the game
	Exercises

	Drawing on Canvas
	SVG
	The canvas element
	Filling and stroking
	Paths
	Curves
	Drawing a pie chart
	Text
	Images
	Transformation
	Storing and clearing transformations
	Back to the game
	Choosing a graphics interface
	Summary
	Exercises

	HTTP
	The protocol
	Browsers and HTTP
	XMLHttpRequest
	Sending a request
	Asynchronous Requests
	Fetching XML Data
	HTTP sandboxing
	Abstracting requests
	Promises
	Appreciating HTTP
	Security and HTTPS
	Summary
	Exercises

	Forms and Form Fields
	Fields
	Focus
	Disabled fields
	The form as a whole
	Text fields
	Checkboxes and radio buttons
	Select fields
	File fields
	Storing data client-side
	Summary
	Exercises

	Project: A Paint Program
	Implementation
	Building the DOM
	The foundation
	Tool selection
	Color and brush size
	Saving
	Loading image files
	Finishing up
	Exercises

	Node.js
	Background
	Asynchronicity
	The node command
	Modules
	Installing with NPM
	The file system module
	The HTTP module
	Streams
	A simple file server
	Error handling
	Summary
	Exercises

	Project: Skill-Sharing Website
	Design
	Long polling
	HTTP interface
	The server
	The client
	Exercises
	Program Structure
	Functions
	Data Structures: Objects and Arrays
	Higher-Order Functions
	The Secret Life of Objects
	Project: Electronic Life
	Bugs and Error Handling
	Regular Expressions
	Modules
	Project: A Programming Language
	The Document Object Model
	Handling Events
	Project: A Platform Game
	Drawing on Canvas
	HTTP
	Forms and Form Fields
	Project: A Paint Program
	Node.js
	Project: Skill-Sharing Website

